【NLP高频面题 - LLM架构篇】旋转位置编码RoPE相对正弦位置编码有哪些优势?

【NLP高频面题 - LLM架构篇】旋转位置编码RoPE相对正弦位置编码有哪些优势?

重要性:⭐⭐⭐ 💯


NLP Github 项目:


RoPE相对正弦位置编码而言是更好的位置编码方式。一个好的位置编码应该满足以下条件:

  • 每个位置输出一个唯一的编码
  • 具备良好的外推性
  • 任何位置之间的相对距离在不同长度的句子中应该是一致的

RoPE可以更好的解决上面的三个问题。

正弦编码(Sinusoidal)

基于Sinusoidal的位置编码最初是由谷歌在论文Attention is All You Need中提出的方案,用于Transformer的位置编码。具体计算方式如下所示:

其中pos是位置,i表示维度。

  • 具有相对位置表达能力:Sinusoidal可以学习到相对位置,对于固定位置距离的k,PE(i+k)可以表示成PE(i)的线性函数。
  • 两个位置向量的内积只和相对位置 k 有关
  • Sinusoidal编码具有对称性 。,即 P E ( t + k ) P E ( t ) = P E ( t ) P E ( t − k ) PE(t+k)PE(t) = PE(t)PE(t-k) PE(t+k)PE(t)=PE(t)PE(t−k),这表明Sinusoidal编码具有对称性
  • 随着k的增加,内积的结果会直接减少,即会存在远程衰减
    • 正弦编码是否真的具备外推性?实际的Attention计算中还需要与attention的权重W相乘,即 P E t T W q T W k P E t + k PE_t^T{W}_q^{T}{W}kPE{t+k} PEtTWqTWkPEt+k ,这时候内积的结果就不能反映相对距离

正弦编码是否真的具备外推性?

似乎Sinusoidal只和相对位置有关。但是实际的Attention计算中还需要与attention的权重W相乘,即 P E t T W q T W k P E t + k PE_t^T{W}_q^{T}{W}kPE{t+k} PEtTWqTWkPEt+k ,这时候内积的结果就不能反映相对距离。正弦编码中真实的q,k向量内积和相对距离之间,没有远程衰减性,如下图所示:

首先,对于RoPE编码任何位置之间的相对距离在不同长度的句子中应该是一致的。

如果两个token在句子1中的相对距离为k,在句子2中的相对距离也是k,那么这两个句子中,两个token之间的相关性应该是一致的,也就是attention_sample1(token1, token2) = attention_sample2(token1, token2)。

可以从旋转矩阵的角度轻松理解此特性。

其次:RoPE编码中q,k向量内积只和相对位置有关

最后,RoPE位置编码具有良好的外推性。

RoPE位置编码:

可以看出,在外推(Extrapolation)时,红色点超出了预训练时的位置编码。

为了解决这个问题,位置线性内插的核心思想是通过缩放位置索引 ,使得模型能够处理比预训练时更长的序列,而不损失太多性能。

微调少量长文本,位置线性内插就能推理长文本:

另外,RoPE旋转位置编码不是作用在embedding的输入层,而是作用在与Attention的计算中,可以避免在输入中引入噪声。


NLP 大模型高频面题汇总

NLP基础篇
【NLP 面试宝典 之 模型分类】 必须要会的高频面题
【NLP 面试宝典 之 神经网络】 必须要会的高频面题
【NLP 面试宝典 之 主动学习】 必须要会的高频面题
【NLP 面试宝典 之 超参数优化】 必须要会的高频面题
【NLP 面试宝典 之 正则化】 必须要会的高频面题
【NLP 面试宝典 之 过拟合】 必须要会的高频面题
【NLP 面试宝典 之 Dropout】 必须要会的高频面题
【NLP 面试宝典 之 EarlyStopping】 必须要会的高频面题
【NLP 面试宝典 之 标签平滑】 必须要会的高频面题
【NLP 面试宝典 之 Warm up 】 必须要会的高频面题
【NLP 面试宝典 之 置信学习】 必须要会的高频面题
【NLP 面试宝典 之 伪标签】 必须要会的高频面题
【NLP 面试宝典 之 类别不均衡问题】 必须要会的高频面题
【NLP 面试宝典 之 交叉验证】 必须要会的高频面题
【NLP 面试宝典 之 词嵌入】 必须要会的高频面题
【NLP 面试宝典 之 One-Hot】 必须要会的高频面题
...
BERT 模型面
【NLP 面试宝典 之 BERT模型】 必须要会的高频面题
【NLP 面试宝典 之 BERT变体】 必须要会的高频面题
【NLP 面试宝典 之 BERT应用】 必须要会的高频面题
...
LLMs 微调面
【NLP 面试宝典 之 LoRA微调】 必须要会的高频面题
【NLP 面试宝典 之 Prompt】 必须要会的高频面题
【NLP 面试宝典 之 提示学习微调】 必须要会的高频面题
【NLP 面试宝典 之 PEFT微调】 必须要会的高频面题
【NLP 面试宝典 之 Chain-of-Thought微调】 必须要会的高频面题
...
相关推荐
java1234_小锋5 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras.Model来定义模型
python·深度学习·tensorflow·tensorflow2
Learn Beyond Limits9 分钟前
TensorFlow Implementation of Content-Based Filtering|基于内容过滤的TensorFlow实现
人工智能·python·深度学习·机器学习·ai·tensorflow·吴恩达
java1234_小锋9 分钟前
TensorFlow2 Python深度学习 - 函数式API(Functional API)
python·深度学习·tensorflow·tensorflow2
是Yu欸13 分钟前
【AI视频】从单模型,到AI Agent工作流
人工智能·ai·ai作画·aigc·音视频·实时音视频
AI人工智能+24 分钟前
发票识别技术:结合OCR与AI技术,实现纸质票据高效数字化,推动企业智能化转型
人工智能·nlp·ocr·发票识别
机器学习之心27 分钟前
198种组合算法+优化CNN卷积神经网络+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!
深度学习·shap分析·优化cnn卷积神经网络
用户51914958484531 分钟前
Aniyomi扩展开发指南与Google Drive集成方案
人工智能·aigc
ezl1fe33 分钟前
第零篇:把 Agent 跑起来的最小闭环
人工智能·后端·agent
说私域36 分钟前
开源链动2+1模式AI智能名片S2B2C商城小程序在竞争激烈的中低端面膜服装行业中的应用与策略
大数据·人工智能·小程序
佛喜酱的AI实践38 分钟前
Claude Code配置魔法:从单人编程到专属AI团队协作
人工智能·claude