矩阵乘法实现填充矩阵F.padding

文章目录

  • [1. 理论](#1. 理论)
  • [2. 代码](#2. 代码)

1. 理论

输入: 有一个矩阵A ,给定需要填充零的方式,左1,右2,上3,下4

python 复制代码
matrix=
tensor([[1., 9., 7.],
        [9., 3., 5.]])
left=1,right=2,top_r=3,button_r=4
my_result=
tensor([[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 1., 9., 7., 0., 0.],
        [0., 9., 3., 5., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]])

2. 代码

python 复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :my_eye_new.py
# @Time      :2024/11/30 10:08
# @Author    :Jason Zhang
import torch
from torch import nn

torch.set_printoptions(sci_mode=False, precision=3)
torch.manual_seed(2323)

if __name__ == "__main__":
    run_code = 0
    left_c = 1
    right_c = 2
    top_r = 3
    button_r = 4
    matrix_row = 2
    matrix_column = 3
    left_cc = left_c + matrix_column
    top_rr = top_r + matrix_row
    matrix = torch.randint(1, 10, (matrix_row, matrix_column), dtype=torch.float)
    my_eye = left_c + right_c + matrix_column
    my_eye_up = top_r + matrix_row + button_r
    torch_eye = torch.eye(my_eye)
    torch_eye_up = torch.eye(my_eye_up)
    my_new = torch_eye[left_c:left_cc, :]
    my_up_one = torch_eye_up[top_r:top_rr, :].T
    my_result = my_up_one @ matrix @ my_new
    my_padding = nn.functional.pad(matrix, (1, 2, 3, 4))
    print(f"matrix=\n{matrix}")
    print(f"left={left_c},right={right_c},top_r={top_r},button_r={button_r}")
    print(f"my_result=\n{my_result}")
    print(f"my_padding=\n{my_padding}")
    check_result = torch.allclose(my_result, my_padding)
    print(f"my_result is {check_result} same with my_padding")
  • 结果:
python 复制代码
matrix=
tensor([[1., 9., 7.],
        [9., 3., 5.]])
left=1,right=2,top_r=3,button_r=4
my_result=
tensor([[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 1., 9., 7., 0., 0.],
        [0., 9., 3., 5., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]])
my_padding=
tensor([[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 1., 9., 7., 0., 0.],
        [0., 9., 3., 5., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]])
my_result is True same with my_padding
相关推荐
北上ing3 小时前
算法练习:19.JZ29 顺时针打印矩阵
算法·leetcode·矩阵
ayiya_Oese4 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
每天都要写算法(努力版)5 小时前
【神经网络与深度学习】通俗易懂的介绍非凸优化问题、梯度消失、梯度爆炸、模型的收敛、模型的发散
人工智能·深度学习·神经网络
Blossom.1185 小时前
Web3.0:互联网的去中心化未来
人工智能·驱动开发·深度学习·web3·去中心化·区块链·交互
硅谷秋水7 小时前
学习以任务为中心的潜动作,随地采取行动
人工智能·深度学习·计算机视觉·语言模型·机器人
九章云极AladdinEdu10 小时前
GPU与NPU异构计算任务划分算法研究:基于强化学习的Transformer负载均衡实践
java·开发语言·人工智能·深度学习·测试工具·负载均衡·transformer
天上路人10 小时前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
汉克老师10 小时前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
蹦蹦跳跳真可爱58911 小时前
Python----神经网络(基于DNN的风电功率预测)
人工智能·pytorch·python·深度学习·神经网络·dnn
TGITCIC11 小时前
智脑进化:神经网络如何从单层感知机迈向深度学习新纪元
人工智能·深度学习·神经网络