矩阵乘法实现填充矩阵F.padding

文章目录

  • [1. 理论](#1. 理论)
  • [2. 代码](#2. 代码)

1. 理论

输入: 有一个矩阵A ,给定需要填充零的方式,左1,右2,上3,下4

python 复制代码
matrix=
tensor([[1., 9., 7.],
        [9., 3., 5.]])
left=1,right=2,top_r=3,button_r=4
my_result=
tensor([[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 1., 9., 7., 0., 0.],
        [0., 9., 3., 5., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]])

2. 代码

python 复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :my_eye_new.py
# @Time      :2024/11/30 10:08
# @Author    :Jason Zhang
import torch
from torch import nn

torch.set_printoptions(sci_mode=False, precision=3)
torch.manual_seed(2323)

if __name__ == "__main__":
    run_code = 0
    left_c = 1
    right_c = 2
    top_r = 3
    button_r = 4
    matrix_row = 2
    matrix_column = 3
    left_cc = left_c + matrix_column
    top_rr = top_r + matrix_row
    matrix = torch.randint(1, 10, (matrix_row, matrix_column), dtype=torch.float)
    my_eye = left_c + right_c + matrix_column
    my_eye_up = top_r + matrix_row + button_r
    torch_eye = torch.eye(my_eye)
    torch_eye_up = torch.eye(my_eye_up)
    my_new = torch_eye[left_c:left_cc, :]
    my_up_one = torch_eye_up[top_r:top_rr, :].T
    my_result = my_up_one @ matrix @ my_new
    my_padding = nn.functional.pad(matrix, (1, 2, 3, 4))
    print(f"matrix=\n{matrix}")
    print(f"left={left_c},right={right_c},top_r={top_r},button_r={button_r}")
    print(f"my_result=\n{my_result}")
    print(f"my_padding=\n{my_padding}")
    check_result = torch.allclose(my_result, my_padding)
    print(f"my_result is {check_result} same with my_padding")
  • 结果:
python 复制代码
matrix=
tensor([[1., 9., 7.],
        [9., 3., 5.]])
left=1,right=2,top_r=3,button_r=4
my_result=
tensor([[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 1., 9., 7., 0., 0.],
        [0., 9., 3., 5., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]])
my_padding=
tensor([[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 1., 9., 7., 0., 0.],
        [0., 9., 3., 5., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]])
my_result is True same with my_padding
相关推荐
纤纡.14 小时前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
程序员清洒14 小时前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
User_芊芊君子15 小时前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
HyperAI超神经15 小时前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
空白诗15 小时前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion
子榆.16 小时前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow
User_芊芊君子16 小时前
CANN图编译器GE全面解析:构建高效异构计算图的核心引擎
人工智能·深度学习·神经网络
爱吃大芒果16 小时前
CANN神经网络算子库设计思路:ops-nn项目的工程化实现逻辑
人工智能·深度学习·神经网络
哈__16 小时前
CANN加速VAE变分自编码器推理:潜在空间重构与编码解码优化
人工智能·深度学习·重构
觉醒大王16 小时前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法