【大数据学习 | Spark】Spark on hive与 hive on Spark的区别

1. Spark on hive

Spark on hive指的是使用Hive的元数据(Metastore)和SQL解析器(HiveQL)。这种方式下,spark可以读取和写入hive表,利用hive的元数据信息来进行表结构的定义和管理。

具体特点为:

1.1 元数据共享

sparkSQL使用hive的Metastore来获取表的元数据信息,这样可以在SparkSQL直接访问hive表。

1.2 SQL兼容性

sparkSQL支持HiveQL的语法,使得用户可以使用熟悉的Hive查询语句在Spark上执行SQL查询。

1.3 性能优化

Spark可以利用强大的分布式计算能力来加速查询,尤其是在处理大规模数据集时。

2. Hive on Spark

hive on Spark指的是将hive的默认的执行引擎MR换成Spark。这种方式下,Hive查询会由Spark执行而不是MR执行,从而利用Spark强大的计算能力。

具体特点为:

2.1 执行引擎的切换

通过配置Hive使其使用Spark作为执行引擎,可以在不改变现有的Hive查询的情况下,显著提高查询性能。

2.2 配置设置

需要在Hive配置文件设置相关参数。

2.3 兼容性

大多数的Hive查询和UDF(用户自定义函数)都可以在Spark引擎上运行,但某些特定的功能可能需要额外的配置。

3. 主要区别

3.1 角色和职责

  • Spark on hive,Spark作为主要的计算框架,利用Hive的元数据和SQL解析器。
  • Hive on Spark,Hive作为主要的查询工具,使用Spark作为底层的执行引擎。

3.2 使用场景

  • Spark on hive,适用于已经使用Spark进行数据处理,但希望利用Hive的元数据管理和SQL解析语法的场景。
  • Hive on Spark,适用于已经适用SQL进行数据查询,但希望提高查询性能的场景。

3.3 发起点

  • Spark on hive,查询是从Spark应用程序发起的,使用SparkSQL或者DataFrame API。
  • Hive on Spark,查询是从Hive客户端发起,使用HiveQL。

3.4 元数据管理

  • Spark on hive,Spark通过Hive的MetaStore获取元数据。
  • Hive on Spark,Hive通过自己的MetaStore来获取元数据。

3.5 任务调度

  • Spark on hive,Spark直接生成执行计划并调度Spark任务。
  • Hive on Spark,Hive生成查询计划,然后将其转化为Spark任务并提交给Spark集群。
相关推荐
北友舰长27 分钟前
基于Springboot+thymeleaf图书管理系统的设计与实现【Java毕业设计·安装调试·代码讲解】
java·spring boot·mysql·课程设计·图书管理·b/s·图书
云和恩墨1 小时前
OceanBase企业版会话级SQL跟踪实操:DBMS_MONITOR(类Oracle 10046事件)
数据库·sql·oracle·oceanbase
为什么不问问神奇的海螺呢丶1 小时前
oracle 数据库巡检 sql
数据库·sql·oracle
麦麦鸡腿堡1 小时前
MySQL数据库操作指令
数据库·mysql
未来之窗软件服务4 小时前
一体化系统(九)智慧社区综合报表——东方仙盟练气期
大数据·前端·仙盟创梦ide·东方仙盟·东方仙盟一体化
火星资讯8 小时前
Zenlayer AI Gateway 登陆 Dify 市场,轻装上阵搭建 AI Agent
大数据·人工智能
星海拾遗8 小时前
git rebase记录
大数据·git·elasticsearch
Elastic 中国社区官方博客8 小时前
Elasticsearch:在分析过程中对数字进行标准化
大数据·数据库·elasticsearch·搜索引擎·全文检索
聪明努力的积极向上8 小时前
【MYSQL】字符串拼接和参数化sql语句区别
数据库·sql·mysql
生产队队长8 小时前
Web:免费的JSON接口
json