李宏毅深度强化学习入门笔记:Actor-Critic

李宏毅-深度强化学习-入门笔记:Actor-Critic

  • 一、深度强化学习简介
  • [二、Policy-based 方法](#二、Policy-based 方法)
    • [(一)学习一个 Actor](#(一)学习一个 Actor)
    • [(二)Deep Learning 的 3 个步骤](#(二)Deep Learning 的 3 个步骤)
      • [1. 确定 Function:作为 Actor 的神经网络](#1. 确定 Function:作为 Actor 的神经网络)
      • [2. 确定 Actor 的好坏](#2. 确定 Actor 的好坏)
      • [3. 选择最好的 Actor](#3. 选择最好的 Actor)
  • [三、Value-based 方法](#三、Value-based 方法)
    • [(一)学习一个 Critic](#(一)学习一个 Critic)
    • [(二)3 种 Critic](#(二)3 种 Critic)
    • [(三)如何评估 V π ( s ) V^{\pi}(s) Vπ(s)](#(三)如何评估 V π ( s ) V^{\pi}(s) Vπ(s))
  • [四、 Actor-Critic](#四、 Actor-Critic)

网课链接:https://www.bilibili.com/video/BV1XP4y1d7Bk/

一、深度强化学习简介

RL分类:Policy-based、Value-based

model-based 需要对未来世界有一定理解,知道未来可能会发生什么事

二、Policy-based 方法

(一)学习一个 Actor

Machine Learning 的任务是找一个 Function, RL 也是找一个称为 Actor 的 Function。

(二)Deep Learning 的 3 个步骤

1. 确定 Function:作为 Actor 的神经网络

NN 的输入:表示机器观测的一个向量或矩阵

NN 的输出:在输出层与动作相关的神经元

2. 确定 Actor 的好坏



3. 选择最好的 Actor

(1)梯度下降

(2)增加一个 baseline

三、Value-based 方法

(一)学习一个 Critic

Critic 不确定 Actor

给定一个 Actor,Critic 可以评估 Actor 有多好

(二)3 种 Critic


(三)如何评估 V π ( s ) V^{\pi}(s) Vπ(s)



四、 Actor-Critic



相关推荐
CNRio10 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll10 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计13 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z14 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
FFF团团员90914 小时前
树莓派学习笔记3:LED和Button
笔记·学习
碧海潮生_CC15 小时前
【CUDA笔记】04 CUDA 归约, 原子操作,Warp 交换
笔记·cuda
阿龙AI日记15 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
摇滚侠15 小时前
2025最新 SpringCloud 教程,从单体到集群架构,笔记02
笔记·spring cloud·架构
风123456789~15 小时前
【OceanBase专栏】OB背景知识
数据库·笔记·oceanbase
强化学习与机器人控制仿真16 小时前
RSL-RL:开源人形机器人强化学习控制研究库
开发语言·人工智能·stm32·神经网络·机器人·强化学习·模仿学习