李宏毅深度强化学习入门笔记:Actor-Critic

李宏毅-深度强化学习-入门笔记:Actor-Critic

  • 一、深度强化学习简介
  • [二、Policy-based 方法](#二、Policy-based 方法)
    • [(一)学习一个 Actor](#(一)学习一个 Actor)
    • [(二)Deep Learning 的 3 个步骤](#(二)Deep Learning 的 3 个步骤)
      • [1. 确定 Function:作为 Actor 的神经网络](#1. 确定 Function:作为 Actor 的神经网络)
      • [2. 确定 Actor 的好坏](#2. 确定 Actor 的好坏)
      • [3. 选择最好的 Actor](#3. 选择最好的 Actor)
  • [三、Value-based 方法](#三、Value-based 方法)
    • [(一)学习一个 Critic](#(一)学习一个 Critic)
    • [(二)3 种 Critic](#(二)3 种 Critic)
    • [(三)如何评估 V π ( s ) V^{\pi}(s) Vπ(s)](#(三)如何评估 V π ( s ) V^{\pi}(s) Vπ(s))
  • [四、 Actor-Critic](#四、 Actor-Critic)

网课链接:https://www.bilibili.com/video/BV1XP4y1d7Bk/

一、深度强化学习简介

RL分类:Policy-based、Value-based

model-based 需要对未来世界有一定理解,知道未来可能会发生什么事

二、Policy-based 方法

(一)学习一个 Actor

Machine Learning 的任务是找一个 Function, RL 也是找一个称为 Actor 的 Function。

(二)Deep Learning 的 3 个步骤

1. 确定 Function:作为 Actor 的神经网络

NN 的输入:表示机器观测的一个向量或矩阵

NN 的输出:在输出层与动作相关的神经元

2. 确定 Actor 的好坏



3. 选择最好的 Actor

(1)梯度下降

(2)增加一个 baseline

三、Value-based 方法

(一)学习一个 Critic

Critic 不确定 Actor

给定一个 Actor,Critic 可以评估 Actor 有多好

(二)3 种 Critic


(三)如何评估 V π ( s ) V^{\pi}(s) Vπ(s)



四、 Actor-Critic



相关推荐
Promise48538 分钟前
贝尔曼公式的迭代求解笔记
笔记·算法
小徐xxx1 小时前
Mamba架构讲解
深度学习·mamba·学习记录
锦锦锦aaa2 小时前
【layout理解篇之:mos电阻】
经验分享·笔记
zore_c2 小时前
【C语言】带你层层深入指针——指针详解2
c语言·开发语言·c++·经验分享·笔记
koo3642 小时前
pytorch深度学习笔记
pytorch·笔记·深度学习
眠晚晚3 小时前
API攻防&系统攻防笔记分享
笔记·web安全·网络安全
java1234_小锋4 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 裁剪和矫正车牌
python·深度学习·cnn·车牌识别
丝斯20115 小时前
AI学习笔记整理(22)—— AI核心技术(深度学习6)
人工智能·笔记·学习
koo3645 小时前
pytorch深度学习笔记1
pytorch·笔记·深度学习
慕ゞ笙5 小时前
2025年Ubuntu24.04系统安装以及深度学习环境配置
人工智能·深度学习