1.前言
相比于传统的谐振调节器,矢量比例积分调节器(vector PI controller,VPI controller)多一个可调零点,能够实现电机模型的零极点对消。因此VPI调节器也被广泛应用于交流控制/谐波抑制中。
2.参考文献
1\] A. G. Yepes, F. D. Freijedo, J. Doval-Gandoy, Ó. López, J. Malvar and P. Fernandez-Comesaña, "Effects of Discretization Methods on the Performance of Resonant Controllers," in *IEEE Transactions on Power Electronics*, vol. 25, no. 7, pp. 1692-1712, July 2010. \[2\] M. Tian, B. Wang, Y. Yu, Q. Dong and D. Xu, "Static-Errorless Deadbeat Predictive Current Control for PMSM Current Harmonics Suppression Based on Vector Resonant Controller," in *IEEE Transactions on Power Electronics*, vol. 38, no. 4, pp. 4585-4595, April 2023. \[3\] Z. Yu, C. Gan, Y. Chen and R. Qu, "DC-Biased Sinusoidal Current Excited Switched Reluctance Motor Drives Based on Flux Modulation Principle," in *IEEE Transactions on Power Electronics*, vol. 35, no. 10, pp. 10614-10628, Oct. 2020. ## 3.VPI的表达式和伯德图 VPI的表达式如下(参考文献2):  再去翻翻之前的R调节器的表达式,VPI就是比谐振调节多了一个可调的零点,其零点配置就可以参照传统PI调节器的零极点对消的方法进行配置。 [https://www.zhihu.com/question/270446098/answer/6271307686https://www.zhihu.com/question/270446098/answer/6271307686](https://www.zhihu.com/question/270446098/answer/6271307686 "https://www.zhihu.com/question/270446098/answer/6271307686") VPI的波特图如下(参考文献2):  VPI的波特图与谐振调节器的伯德图其实就差不多,都有个谐振点。 ## 4.VPI的离散化 参考文献2用双线性变换对VPI进行了离散化。其表达式如下:  在我之前的文章就说过,用双线性离散化肯定是不够用的,特别是高速和载波比比较低的情况。最好还是用预插值双线性变换。 各种离散化方法以及离散化对VPI和谐振调节器的影响分析见参考文献1。  我下面的仿真用的都是预插值双线性变换。 ## 5.仿真验证 ### 5.1仿真参数  ### 5.2谐波抑制效果展示  PI调节器 VPI调节器(抑制相电流5、7次谐波)  VPI调节器(抑制相电流5、7、11、13次谐波) 详细的FFT分析如下图所示,可以看到,加入对应频次的VPI调节器之后,就可以有效抑制相电流中对应的谐波电流。 PI调节器的相电流THD为:2.93%; VPI调节器(抑制相电流5、7次谐波)的相电流THD为:1.22%; VPI调节器(抑制相电流5、7、11、13次谐波)的相电流THD为:1.03%。  PI调节器  VPI调节器(抑制相电流5、7次谐波)  VPI调节器(抑制相电流5、7、11、13次谐波) ### 5.3启动情况对比  PI调节器  VPI调节器(抑制相电流5、7、11、13次谐波) ### 5.4突加负载情况对比  PI调节器  VPI调节器(抑制相电流5、7、11、13次谐波) 从启动情况与突加负载情况来看,VPI的加入都没有影响到系统中原有的动态性能。