深度学习常用训练命令解释

深度学习项目的训练命令通常是是根据训练文件(train.py)设定来接收参数

举例参考

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --dataset rrsisd --model_id RMSIN --epochs 40 --img_size 480 2>&1 | tee ./output

命令解释

1.CUDA_VISIBLE_DEVICES=0,1,2,3:

  • 这个环境变量用于指定哪些 GPU 可用。在这里,设备 0 到 3 被设置为可用 GPU,这意味着你的程序将会使用这些 GPU 进行训练。

  • 单个GPU训练命令

python 复制代码
CUDA_VISIBLE_DEVICES=0 python train.py --dataset rrsisd --model_id RMSIN --epochs 40 --img_size 480 2>&1 | tee ./output
  1. python -m torch.distributed.launch:

    • 这是 PyTorch 的分布式训练模块。使用 -m 选项可以让 Python 作为模块运行,torch.distributed.launch 会负责启动多个进程。
  2. --nproc_per_node 4:

    • 指定每个节点(通常是每个机器)要启动的进程数。在这个例子中,指定为 4,这意味着会启动 4 个训练进程,分别使用前面指定的 4 个 GPU。
  3. --master_port 12345:

    • 这是用于进程间通信的主端口号。所有进程将通过这个端口进行通信。
  4. train.py:

    • 这是你的训练脚本文件,包含了模型训练的代码。
  5. --dataset rrsisd:

    • 指定要使用的数据集名称为 rrsisd。你需要确保在代码中相应地处理这个数据集。
  6. --model_id RMSIN:

    • 这是指定模型 ID 的参数。具体使用时需要在 train.py 中处理这个参数。
  7. --epochs 40:

    • 指定训练的轮数(epochs),在这个例子中为 40 轮。
  8. --img_size 480:

    • 指定输入图像的尺寸为 480(假设是正方形图像)。
  9. 2>&1 | tee ./output:

  • 2>&1 将标准错误输出(stderr)重定向到标准输出(stdout),确保所有输出都被捕获。
  • | tee ./output 将输出同时写入到 output 文件中,并在终端中显示。这样你可以在运行时查看日志,同时保留日志文件。
相关推荐
机器之心7 分钟前
OpenAI的AI复现论文新基准,Claude拿了第一名
人工智能
Niuguangshuo10 分钟前
Python设计模式:代理模式
开发语言·python·代理模式
骑猪兜风23313 分钟前
没有人知道“他妈的” 智能体到底是什么
人工智能·openai·ai编程
www_pp_14 分钟前
# 实时人脸识别系统:基于 OpenCV 和 Python 的实现
人工智能·python·opencv
果冻人工智能14 分钟前
MCP:让 AI 应用更聪明,只需几分钟
人工智能
人工智能培训咨询叶梓28 分钟前
LLAMAFACTORY:一键优化大型语言模型微调的利器
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·llama factory
果冻人工智能28 分钟前
数学不是你以为的那样 —— 但它决定你在AI时代的命运
人工智能
蓝衣剑客31 分钟前
山姆·奥特曼传(二):OpenAI的第一次内斗
人工智能·ai编程
遇健李的幸运32 分钟前
AI团队比单打独斗强!CrewAI多智能体协作系统开发踩坑全解析
人工智能
蓝衣剑客32 分钟前
山姆·奥特曼传(三):硬币的两面
人工智能·ai编程