深度学习常用训练命令解释

深度学习项目的训练命令通常是是根据训练文件(train.py)设定来接收参数

举例参考

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --dataset rrsisd --model_id RMSIN --epochs 40 --img_size 480 2>&1 | tee ./output

命令解释

1.CUDA_VISIBLE_DEVICES=0,1,2,3:

  • 这个环境变量用于指定哪些 GPU 可用。在这里,设备 0 到 3 被设置为可用 GPU,这意味着你的程序将会使用这些 GPU 进行训练。

  • 单个GPU训练命令

python 复制代码
CUDA_VISIBLE_DEVICES=0 python train.py --dataset rrsisd --model_id RMSIN --epochs 40 --img_size 480 2>&1 | tee ./output
  1. python -m torch.distributed.launch:

    • 这是 PyTorch 的分布式训练模块。使用 -m 选项可以让 Python 作为模块运行,torch.distributed.launch 会负责启动多个进程。
  2. --nproc_per_node 4:

    • 指定每个节点(通常是每个机器)要启动的进程数。在这个例子中,指定为 4,这意味着会启动 4 个训练进程,分别使用前面指定的 4 个 GPU。
  3. --master_port 12345:

    • 这是用于进程间通信的主端口号。所有进程将通过这个端口进行通信。
  4. train.py:

    • 这是你的训练脚本文件,包含了模型训练的代码。
  5. --dataset rrsisd:

    • 指定要使用的数据集名称为 rrsisd。你需要确保在代码中相应地处理这个数据集。
  6. --model_id RMSIN:

    • 这是指定模型 ID 的参数。具体使用时需要在 train.py 中处理这个参数。
  7. --epochs 40:

    • 指定训练的轮数(epochs),在这个例子中为 40 轮。
  8. --img_size 480:

    • 指定输入图像的尺寸为 480(假设是正方形图像)。
  9. 2>&1 | tee ./output:

  • 2>&1 将标准错误输出(stderr)重定向到标准输出(stdout),确保所有输出都被捕获。
  • | tee ./output 将输出同时写入到 output 文件中,并在终端中显示。这样你可以在运行时查看日志,同时保留日志文件。
相关推荐
songyuc14 小时前
《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记
人工智能·笔记·计算机视觉
码界奇点14 小时前
解密AI语言模型从原理到应用的全景解析
人工智能·语言模型·自然语言处理·架构
余衫马14 小时前
你好,未来:零基础看懂大语言模型
人工智能·语言模型·自然语言处理·智能体
pingao14137814 小时前
冰雪环境无忧测:冬季加热激光雪深监测站保障道路安全与气象研究
人工智能·安全
你才是向阳花14 小时前
如何用Python实现飞机大战小游戏
开发语言·python·pygame
AndrewHZ14 小时前
【图像处理基石】提升图像通透感:从原理到实操的完整指南
图像处理·人工智能·计算机视觉·cv·对比度·动态范围·通透感
草莓熊Lotso15 小时前
C++ 方向 Web 自动化测试实战:以博客系统为例,从用例到报告全流程解析
前端·网络·c++·人工智能·后端·python·功能测试
劲墨难解苍生苦15 小时前
spring ai alibaba mcp 开发demo
java·人工智能
程序员爱钓鱼15 小时前
Python编程实战——Python实用工具与库:Pandas数据处理
后端·python·ipython
程序员爱钓鱼15 小时前
Python编程实战——Python实用工具与库:Numpy基础
后端·python·面试