深度学习常用训练命令解释

深度学习项目的训练命令通常是是根据训练文件(train.py)设定来接收参数

举例参考

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --dataset rrsisd --model_id RMSIN --epochs 40 --img_size 480 2>&1 | tee ./output

命令解释

1.CUDA_VISIBLE_DEVICES=0,1,2,3:

  • 这个环境变量用于指定哪些 GPU 可用。在这里,设备 0 到 3 被设置为可用 GPU,这意味着你的程序将会使用这些 GPU 进行训练。

  • 单个GPU训练命令

python 复制代码
CUDA_VISIBLE_DEVICES=0 python train.py --dataset rrsisd --model_id RMSIN --epochs 40 --img_size 480 2>&1 | tee ./output
  1. python -m torch.distributed.launch:

    • 这是 PyTorch 的分布式训练模块。使用 -m 选项可以让 Python 作为模块运行,torch.distributed.launch 会负责启动多个进程。
  2. --nproc_per_node 4:

    • 指定每个节点(通常是每个机器)要启动的进程数。在这个例子中,指定为 4,这意味着会启动 4 个训练进程,分别使用前面指定的 4 个 GPU。
  3. --master_port 12345:

    • 这是用于进程间通信的主端口号。所有进程将通过这个端口进行通信。
  4. train.py:

    • 这是你的训练脚本文件,包含了模型训练的代码。
  5. --dataset rrsisd:

    • 指定要使用的数据集名称为 rrsisd。你需要确保在代码中相应地处理这个数据集。
  6. --model_id RMSIN:

    • 这是指定模型 ID 的参数。具体使用时需要在 train.py 中处理这个参数。
  7. --epochs 40:

    • 指定训练的轮数(epochs),在这个例子中为 40 轮。
  8. --img_size 480:

    • 指定输入图像的尺寸为 480(假设是正方形图像)。
  9. 2>&1 | tee ./output:

  • 2>&1 将标准错误输出(stderr)重定向到标准输出(stdout),确保所有输出都被捕获。
  • | tee ./output 将输出同时写入到 output 文件中,并在终端中显示。这样你可以在运行时查看日志,同时保留日志文件。
相关推荐
写代码的【黑咖啡】3 小时前
深入了解 Python 中的 Scikit-learn:机器学习的强大工具
python·机器学习·scikit-learn
新知图书3 小时前
FastGPT工作流的节点
人工智能·fastgpt·ai agent·智能体·大模型应用开发
乾元3 小时前
网络切片的自动化配置与 SLA 保证——5G / 专网场景中,从“逻辑隔离”到“可验证承诺”的工程实现
运维·开发语言·网络·人工智能·网络协议·重构
小程故事多_803 小时前
RCAgent,基于LLM自主智能体的云平台根因分析实践与探索
人工智能·aigc
CHrisFC3 小时前
中小型第三方环境检测实验室的数字化破局之选——江苏硕晟LIMS
大数据·运维·人工智能
2503_946971863 小时前
【AGI/Multi-Agent】2026年度AGI情感对齐与多智能体协同渗透基准索引 (Benchmark Index)
人工智能·网络安全·数据集·计算机图形学·多智能体
zzhongcy3 小时前
Trae、Cursor、Copilot、Windsurf对比
人工智能·copilot
逆境清醒3 小时前
python教程总目录(更新中ing。。。)
开发语言·python
小北方城市网3 小时前
GEO 智变新篇:质效双升 + 责任共生,打造 AI 时代本地商业长效增长引擎
大数据·人工智能·python·数据库架构
qq19257230273 小时前
opencv
人工智能·opencv·计算机视觉