图生3d 图生全景 学习笔记

目录

instantsplat

Aluciddreamer

ZoeDepth

会自动下载模型:

图生全景图SD-T2I-360PanoImage:



instantsplat

Sparse-view SfM-free Gaussian Splatting in Seconds

稀疏视图无SfM高斯喷洒

GitHub - NVlabs/InstantSplat: InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds

Aluciddreamer

GitHub - luciddreamer-cvlab/LucidDreamer: Official code for the paper "LucidDreamer: Domain-free Generation of 3D Gaussian Splatting Scenes".

解析器添加参数('--campath_gen','-cg'),类型为字符串,默认值为'rotate360',可选值为 ['lookdown','lookaround','rotate360'],帮助信息为 "用于场景生成的相机外参轨迹"。

解析器添加参数('--campath_render','-cr'),类型为字符串,默认值为'back_and_forth',可选值为 ['back_and_forth','llff','headbanging'],帮助信息为 "用于视频渲染的相机外参轨迹"。

ZoeDepth

引用地址:

GitHub - isl-org/ZoeDepth: Metric depth estimation from a single image

演示地址:

https://huggingface.co/spaces/shariqfarooq/ZoeDepth

模型下载地址:

Releases · isl-org/ZoeDepth · GitHub

会自动下载模型:

python 复制代码
self.d_model = torch.hub.load('./ZoeDepth', 'ZoeD_N', source='local', pretrained=True).to('cuda')

下载路径:

/mnt/pfs/models/torch/hub/intel-isl_MiDaS_master Using cache found in

/mnt/pfs/models/torch/hub/checkpoints

图生全景图SD-T2I-360PanoImage:

pip install numpy==1.23.2

python 复制代码
import sys
import os
os.chdir(os.path.dirname(os.path.abspath(__file__)))
 
import torch
 
current_dir = os.path.dirname(os.path.abspath(__file__))
 
paths = [os.path.abspath(__file__).split('scripts')[0]]
print('current_dir',current_dir)
paths.append(os.path.abspath(os.path.join(current_dir, 'src')))
 
for path in paths:
    sys.path.insert(0, path)
    os.environ['PYTHONPATH'] = (os.environ.get('PYTHONPATH', '') + ':' + path).strip(':')
    
import torch
from diffusers.utils import load_image
from img2panoimg import Image2360PanoramaImagePipeline

image = load_image("./data/i2p-image.jpg").resize((512, 512))
mask = load_image("./data/i2p-mask.jpg")

prompt = 'The office room'

# for <16GB gpu
input = {'prompt': prompt, 'image': image, 'mask': mask, 'upscale': False}

# for >16GB gpu (24GB at least)
# the similarity with the input image is poor because of the super-resolution steps. It should be improved.
# input = {'prompt': prompt, 'image': image, 'mask': mask, 'upscale': True}

model_id = 'models'
img2panoimg = Image2360PanoramaImagePipeline(model_id, torch_dtype=torch.float16)
output = img2panoimg(input)
output.save('result.png')
相关推荐
盼小辉丶4 分钟前
Transformer实战——微调多语言Transformer模型
深度学习·语言模型·transformer
Tadas-Gao5 分钟前
深度学习与机器学习的知识路径:从必要基石到独立范式
人工智能·深度学习·机器学习·架构·大模型·llm
机器学习之心16 分钟前
基于GRU门控循环单元的轴承剩余寿命预测MATLAB实现
深度学习·matlab·gru·轴承剩余寿命预测
算法狗237 分钟前
大模型面试题:1B的模型和1T的数据大概要训练多久
人工智能·深度学习·机器学习·语言模型
啊森要自信1 小时前
CANN ops-cv:揭秘视觉算子的硬件感知优化与内存高效利用设计精髓
人工智能·深度学习·架构·transformer·cann
scott1985121 小时前
transformer中的位置编码:从绝对位置编码到旋转位置编码
人工智能·深度学习·transformer
weixin_468466851 小时前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参
&星痕&1 小时前
人工智能:深度学习:1.pytorch概述(2)
人工智能·深度学习
power 雀儿1 小时前
FFN前馈网络C++实现
人工智能·深度学习
芷栀夏1 小时前
CANN ops-math:为上层 AI 算子库提供核心支撑的基础计算模块深度拆解
人工智能·深度学习·transformer·cann