代码随想录Day34 本周小结动态规划,62.不同路径,63. 不同路径 II,343. 整数拆分,96.不同的二叉搜索树。

1. 本周小结动态规划

周一

关于动态规划,你该了解这些! (opens new window)中我们讲解了动态规划的基础知识。

首先讲一下动规和贪心的区别,其实大家不用太强调理论上的区别,做做题,就感受出来了。

然后我们讲了动规的五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

后序我们在讲解动规的题目时候,都离不开这五步!

本周都是简单题目,大家可能会感觉 按照这五部来好麻烦,凭感觉随手一写,直接就过,越到后面越会感觉,凭感觉这个事还是不靠谱的。

最后我们讲了动态规划题目应该如何debug,相信一些录友做动规的题目,一旦报错也是凭感觉来改。

其实只要把dp数组打印出来,哪里有问题一目了然!

如果代码写出来了,一直AC不了,灵魂三问:

  1. 这道题目我举例推导状态转移公式了么?
  2. 我打印dp数组的日志了么?
  3. 打印出来了dp数组和我想的一样么?

周二

这道题目动态规划:斐波那契数 (opens new window)是当之无愧的动规入门题。

简单题,我们就是用来了解方法论的,用动规五部曲走一遍,题目其实已经把递推公式,和dp数组如何初始化都给我们了。

周三

动态规划:爬楼梯 (opens new window)这道题目其实就是斐波那契数列。

但正常思考过程应该是推导完递推公式之后,发现这是斐波那契,而不是上来就知道这是斐波那契。

在这道题目的第三步,确认dp数组如何初始化,其实就可以看出来,对dp[i]定义理解的深度。

dp[0]其实就是一个无意义的存在,不用去初始化dp[0]。

有的题解是把dp[0]初始化为1,然后遍历的时候i从2开始遍历,这样是可以解题的,然后强行解释一波dp[0]应该等于1的含义。

一个严谨的思考过程,应该是初始化dp[1] = 1,dp[2] = 2,然后i从3开始遍历。

这道题目还可以继续深化,就是一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。

一个绝佳的大厂面试题,第一道题就是单纯的爬楼梯,然后看候选人的代码实现,如果把dp[0]的定义成1了,就可以发难了,为什么dp[0]一定要初始化为1,此时可能候选人就要强行给dp[0]应该是1找各种理由。那这就是一个考察点了,对dp[i]的定义理解的不深入。

然后可以继续发难,如果一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。这道题目leetcode上并没有原题,绝对是考察候选人算法能力的绝佳好题。

这一连套问下来,候选人算法能力如何,面试官心里就有数了。

其实大厂面试最喜欢问题的就是这种简单题,然后慢慢变化,在小细节上考察候选人

这道绝佳的面试题我没有用过,如果录友们有面试别人的需求,就把这个套路拿去吧。

我在通过一道面试题目,讲一讲递归算法的时间复杂度! (opens new window)中,以我自己面试别人的真实经历,通过求x的n次方 这么简单的题目,就可以考察候选人对算法性能以及递归的理解深度,录友们可以看看,绝对有收获!

周四

这道题目动态规划:使用最小花费爬楼梯 (opens new window)就是在爬台阶的基础上加了一个花费,

这道题描述也确实有点魔幻。

题目描述为:每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

示例1:

输入:cost = [10, 15, 20] 输出:15

从题目描述可以看出:要不是第一步不需要花费体力,要不就是第最后一步不需要花费体力,我个人理解:题意说的其实是第一步是要支付费用的!。因为是当你爬上一个台阶就要花费对应的体力值!

所以我定义的dp[i]意思是也是第一步是要花费体力的,最后一步不用花费体力了,因为已经支付了。

之后一些录友在留言区说 可以定义dp[i]为:第一步是不花费体力,最后一步是花费体力的。

2. 不同路径

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish" )。

问总共有多少条不同的路径?

示例 1:

  • 输入:m = 3, n = 7
  • 输出:28

示例 2:

  • 输入:m = 2, n = 3
  • 输出:3

解释: 从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 3:

  • 输入:m = 7, n = 3
  • 输出:28

示例 4:

  • 输入:m = 3, n = 3
  • 输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

思路

深搜

这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

如图举例:

此时问题就可以转化为求二叉树叶子节点的个数

深搜的算法,其实就是要遍历整个二叉树。

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

  1. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

如图所示:

数论方法

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

那么答案,如图所示:

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

总结

本文分别给出了深搜,动规,数论三种方法。

深搜当然是超时了,顺便分析了一下使用深搜的时间复杂度,就可以看出为什么超时了。

然后在给出动规的方法,依然是使用动规五部曲,这次我们就要考虑如何正确的初始化了,初始化和遍历顺序其实也很重要!

java 复制代码
public class different_paths {
    public static int uniquePaths(int m, int n) {//接受两个整数参数m和n,分别代表网格的行数和列数,并返回到达右下角的不同路径数量。
        int[][] dp = new int[m][n];//一个二维数组dp,用于存储到达每个格子的不同路径数量。
        for (int i = 0; i < m; i++) {//初始化第一列的所有值为1,因为到达第一列的任何格子只有一种方式,即沿着第一列向下移动。
            dp[i][0] = 1;
        }
        for (int i = 0; i < n; i++) {//初始化第一行的所有值为1,因为到达第一行的任何格子只有一种方式,即沿着第一行向右移动。
            dp[0][i] = 1;
        }
        for (int i = 1; i < m; i++) {//计算到达每个格子的不同路径数量。对于每个格子(i, j),到达该格子的路径数量等于到达其上方格子(i-1, j)的路径数量加上到达其左侧格子(i, j-1)的路径数量。
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];//返回到达右下角格子的不同路径数量。
    }
}
  • 时间复杂度为O(m * n^2)
  • 空间复杂度为O(m * n)

状态压缩

java 复制代码
public class different_paths {
    public int uniquePaths2(int m, int n) {//接受两个整数参数m和n,并返回到达右下角的不同路径数量。
        int[] dp = new int[n];//一维数组dp,用于存储到达每一行的最后一个格子的不同路径数量。
        Arrays.fill(dp, 1);//将dp数组的所有元素初始化为1,因为到达第一行的任何格子只有一种方式。
        for (int i = 1; i < m; i ++) {//计算到达每一行的最后一个格子的不同路径数量。对于每一行i(从第二行开始),到达该行的每个格子j的路径数量等于到达上一行的同一列的格子j-1的路径数量加上到达当前行的前一列的格子j的路径数量。
            for (int j = 1; j < n; j ++) {
                dp[j] += dp[j - 1];
            }
        }
        return dp[n - 1];
    }
}

时间复杂度为O(m * n)

空间复杂度为O(n)

3.不同路径 II

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为"Finish")。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

  • 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
  • 输出:2 解释:
  • 3x3 网格的正中间有一个障碍物。
  • 从左上角到右下角一共有 2 条不同的路径:
    1. 向右 -> 向右 -> 向下 -> 向下
    2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

  • 输入:obstacleGrid = [[0,1],[0,0]]
  • 输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路

这道题相对于62.不同路径 (opens new window)就是有了障碍。

第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢?

62.不同路径 (opens new window)中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

  1. dp数组如何初始化

62.不同路径 (opens new window)不同路径中

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

下标(0, j)的初始化情况同理。

for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

  1. 确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

  1. 举例推导dp数组

拿示例1来举例如题:

对应的dp table 如图:

总结

本题是62.不同路径 (opens new window)的障碍版,整体思路大体一致。

但就算是做过62.不同路径,在做本题也会有感觉遇到障碍无从下手。

其实只要考虑到,遇到障碍dp[i][j]保持0就可以了。

也有一些小细节,例如:初始化的部分,很容易忽略了障碍之后应该都是0的情况。

java 复制代码
public class different_pathsII {
    public int uniquePathsWithObstacles1(int[][] obstacleGrid) {//接受一个二维整数数组obstacleGrid作为参数,表示网格,其中1表示障碍物,0表示空地。该方法返回从左上角到右下角的不同路径数量。
        int m = obstacleGrid.length;//获取网格的行数m和列数n。
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];//用于存储到达每个格子的不同路径数量。
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {//如果目标格子(右下角)或起点(左上角)有障碍物,则返回0,因为无法到达目的地。
            return 0;
        }
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {//初始化第一列的值。如果某行的第一列没有障碍物,则到达该列的路径数量为1。
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {//初始化第一行的值。如果某列的第一行没有障碍物,则到达该行的路径数量为1。
            dp[0][j] = 1;
        }
        for (int i = 1; i < m; i++) {//计算从第二行第二列开始的所有格子的路径数量。
            for (int j = 1; j < n; j++) {
                dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;//如果该格子没有障碍物,则到达该格子的路径数量等于到达其上方格子(i-1, j)的路径数量加上到达其左侧格子(i, j-1)的路径数量。如果该格子有障碍物,则到达该格子的路径数量为0。
            }
        }
        return dp[m - 1][n - 1];
    }
   
}

时间复杂度为O(m * n)

空间复杂度为O(m * n)

空间优化版本

java 复制代码
public class different_pathsII {
    public int uniquePathsWithObstacles2(int[][] obstacleGrid) {//接受一个二维整数数组obstacleGrid作为参数,表示网格,其中1表示障碍物,0表示空地。该方法返回从左上角到右下角的不同路径数量。
        int m = obstacleGrid.length;//获取网格的行数m和列数n。
        int n = obstacleGrid[0].length;
        int[] dp = new int[n];//一维数组dp,用于存储到达每一列的最后一个格子的不同路径数量。
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {//初始化第一行的值。如果第一行的某个格子没有障碍物,则到达该格子的路径数量为1。
            dp[j] = 1;
        }
        for (int i = 1; i < m; i++) {//外层循环遍历网格的每一行,从第二行开始。
            for (int j = 0; j < n; j++) {//内层循环遍历当前行的每个格子。
                if (obstacleGrid[i][j] == 1) {//如果当前格子有障碍物,则到达该格子的路径数量为0。
                    dp[j] = 0;
                } else if (j != 0) {//如果当前格子没有障碍物,并且不是当前列的第一个格子(即j != 0),则到达该格子的路径数量等于到达当前列前一个格子的路径数量(即dp[j - 1])。
                    dp[j] += dp[j - 1];
                }
            }
        }
        return dp[n - 1];
    }
}

时间复杂度为O(m * n)

空间复杂度为O(n)

4.整数拆分

力扣题目链接(opens new window)

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

  • 输入: 2
  • 输出: 1
  • 解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

  • 输入: 10
  • 输出: 36
  • 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
  • 说明: 你可以假设 n 不小于 2 且不大于 58。

思路

动态规划

动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

  1. 确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那有同学问了,j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

  1. dp的初始化

不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?

有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

  1. 确定遍历顺序

确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

至于 "拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的" 这个我就不去做数学证明了,感兴趣的同学,可以自己证明。

  1. 举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:

贪心

本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!

动态规划

java 复制代码
public class Integer_Partition {
    public int integerBreak1(int n) {//接受一个整数n作为参数,并返回将其拆分后能得到的最大乘积。
        int[] dp = new int[n+1];//一个长度为n+1的整型数组dp,用于存储从1到n每个整数拆分后能得到的最大乘积。
        dp[2] = 1;//初始化dp[2]为1,因为2是最小的可以拆分的数,且2只能拆分为1+1,乘积为1。
        for(int i = 3; i <= n; i++) {//外层循环从3开始,因为2已经在上一步初始化了。
            for(int j = 1; j <= i-j; j++) {//内层循环遍历所有可能的拆分数j,使得j和i-j的和为i。
                dp[i] = Math.max(dp[i], Math.max(j*(i-j), j*dp[i-j]));//对于每个i,尝试所有可能的拆分方式,计算j*(i-j)和j*dp[i-j],取两者中较大的值,更新dp[i]。j*(i-j)表示将i拆分为j和i-j的乘积,j*dp[i-j]表示将i拆分为j和剩余部分(i-j)的最大乘积。
            }
        }
        return dp[n];
    }
  
}

时间复杂度:O(n^2)

空间复杂度:O(n)

贪心

java 复制代码
public class Integer_Partition {
    public int integerBreak2(int n) {
        if(n == 2) return 1;//如果n为2,直接返回1,因为2不能拆分为更小的正整数。
        if(n == 3) return 2;//如果n为3,直接返回2,因为3的最佳拆分是1+1+1,乘积为1,但3本身作为单个整数的乘积为3。
        int result = 1;
        while(n > 4) {//每次循环减少n的值3,并更新result为原来的3倍。这是因为对于大于4的数,每次拆分出一个3,都能保证乘积最大。
            n-=3;
            result *=3;
        }
        return result*n;//循环结束后,n的值将小于或等于4。此时,根据n的值(可能是2、3或4),直接与result相乘得到最终的最大乘积。
    }
}

时间复杂度:O(n)

空间复杂度:O(1)

5.不同的二叉搜索树

力扣题目链接(opens new window)

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

思路

这道题目描述很简短,但估计大部分同学看完都是懵懵的状态,这得怎么统计呢?

关于什么是二叉搜索树,我们之前在讲解二叉树专题的时候已经详细讲解过了,也可以看看这篇二叉树:二叉搜索树登场! (opens new window)再回顾一波。

了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:

n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

来看看n为3的时候,有哪几种情况。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:

此时我们已经找到递推关系了,那么可以用动规五部曲再系统分析一遍。

  1. 确定dp数组(dp table)以及下标的含义

dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]

也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

以下分析如果想不清楚,就来回想一下dp[i]的定义

  1. 确定递推公式

在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

  1. dp数组如何初始化

初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

  1. 确定遍历顺序

首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

  1. 举例推导dp数组

n为5时候的dp数组状态如图:

当然如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。

java 复制代码
public class Different_Binary_Search_Trees {
    public int numTrees(int n) {//接受一个整数n作为参数,表示节点的数量,并返回可以形成的不同二叉搜索树的数量。
        int[] dp = new int[n + 1];//一个长度为n + 1的整型数组dp,用于存储从0到n个节点时不同二叉搜索树的数量。
        dp[0] = 1;//初始化dp[0]和dp[1]。对于0个节点,有一种空树的情况,对于1个节点,有一种单节点树的情况。
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= i; j++) {//内层循环遍历从1到i的所有可能的根节点。
                dp[i] += dp[j - 1] * dp[i - j];//对于每个i,计算以j为根节点时的不同二叉搜索树的数量,并将结果累加到dp[i]。这里dp[j - 1]表示左子树的不同二叉搜索树的数量(j - 1个节点),dp[i - j]表示右子树的不同二叉搜索树的数量(i - j个节点)。
            }
        }
        return dp[n];
    }
}

时间复杂度:O(n^2)

空间复杂度:O(n)

相关推荐
m0_748236831 小时前
Spring Boot日志:从Logger到@Slf4j的探秘
java·spring boot·spring
芒果爱编程1 小时前
MCU、ARM体系结构,单片机基础,单片机操作
开发语言·网络·c++·tcp/ip·算法
明明跟你说过1 小时前
【Go语言】从Google实验室走向全球的编程新星
开发语言·后端·go·go1.19
再不会python就不礼貌了1 小时前
震撼!最强开源模型通义千问2.5 72B竟在4GB老显卡上成功运行!
人工智能·算法·机器学习·chatgpt·产品经理
码字哥2 小时前
EasyExcel设置表头上面的那种大标题(前端传递来的大标题)
java·服务器·前端
凌盛羽2 小时前
C#对Excel表csv文件的读写操作
开发语言·windows·物联网·microsoft·c#·excel
VBA63372 小时前
VBA高级应用30例应用在Excel中的ListObject对象:向表中添加注释
开发语言
Dontla2 小时前
Rust字节数组(Byte Array)Rust u8、Vec<u8>、数组切片、向量切片、字符串转字节数组转字符串、&[u8]类型:字节数组引用
开发语言·rust
走在考研路上4 小时前
Python错误处理
开发语言·python
数据小爬虫@4 小时前
Python爬虫:如何优雅地“偷窥”商品详情
开发语言·爬虫·python