【论文笔记】VisionZip: Longer is Better but Not Necessary in Vision Language Models

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : VisionZip: Longer is Better but Not Necessary in Vision Language Models
作者 : Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, Jiaya Jia
arXiv : https://arxiv.org/abs/2412.04467

摘要

近期视觉-语言模型在性能上的提升是通过增加视觉token的长度实现的,这使得它们比文本token长得多,并显著提高了计算成本。

然而,我们发现流行的视觉编码器(如CLIP和SigLIP)生成的视觉token存在大量冗余。

为了解决这个问题,我们提出了VisionZip,这是一种简单而有效的方法,它选择一组信息token作为语言模型的输入,减少视觉token的冗余,提高效率,同时保持模型性能。

所提出的VisionZip可以广泛应用于图像和视频理解任务,非常适合现实场景中的多轮对话,其中先前的方法往往表现不佳。

实验结果表明,VisionZip在几乎所有设置中至少比先前最先进的方法提高了5%的性能。

此外,我们的方法显著提高了模型推理速度,将预填充时间提高了8倍,并使LLaVA-Next 13B模型在达到更好结果的同时,推理速度超过了LLaVA-Next 7B模型。

此外,我们分析了这种冗余的原因,并鼓励社区关注提取更好的视觉特征,而不仅仅是增加token长度。

我们的代码可在https://github.com/dvlab-research/VisionZip上找到。

VisionZip

Redundancy Observation

在流行的视觉语言模型如LLaVA和MiniGemini中,视觉token的数量远超过文本token,消耗了大量的计算资源。为了评估这些token是否都是必要的,我们对常用视觉编码器CLIP和SigLIP生成的视觉token进行了试点研究。

具体来说,我们随机抽取了一幅图像,并可视化了视觉编码器-2层的每个token的注意力,该层是大多数VLM(如LLaVA)获取输入视觉token所选用的层。

如图2所示,CLIP和SigLIP都表现出注意力集中在少数几个token上的模式,而大多数视觉token则受到极少的关注。

此外,为了证明仅关注少数token是一种正常现象,我们分析了TextVQA验证集上注意力权重的分布。

如图2所示,大多数视觉token受到的关注非常低,权重接近于零,而只有少数token具有更高的注意力权重。

基于这一观察,我们发现大多数注意力权重低的视觉token贡献的信息很少,并增加了大量的冗余。

只有少数视觉token聚集了大量的信息,值得集中关注;我们将这些称为主导视觉token。

因此,为了减少冗余,我们专注于选择最具信息量的token------例如主导视觉token------同时丢弃信息量较少的token,以减少整体token数量。

Informative Visual Token Zip

Dominant Token Selection
Contextual Tokens Merging

Efficient Tuning

信息视觉token压缩器从视觉编码器中提取高度信息化的token,并丢弃其他token,从而显著减少了输入到LLM的token长度,可能减少到十倍。

然而,这种视觉token的减少可能导致一定程度的不匹配,因为原本在所有完整视觉token上训练的VLM模型可能难以适应这种突然的减少。

为了弥合视觉和LLM空间之间的差距,我们使用最小指令微调数据来高效微调多模态投影仪,同时保持其他组件冻结,增强视觉和语言空间之间的对齐。

值得注意的是,指令微调只需要LLaVA-1.5数据集的1/10,并且可以在8个Nvidia A800上仅用30分钟完成LLaVA 1.5 7B,此过程也可以在3090 GPU上实施,既资源高效又有效。

Usage of VisionZip

VisionZip能够适应多种任务,不仅适用于视觉语言模型中的图像和视频理解,还能处理之前高效视觉语言模型无法处理的多次对话。

VisionZip易于实现,因为它与文本无关,使得它可以与所有现有的语言模型算法兼容以加速。

VisionZip可以被视为视觉编码器的即插即用方法,在节省3倍运行时间和内存的同时,保留了超过90%的原模型性能。

它甚至可以使一个130亿的视觉语言模型比一个70亿的视觉语言模型更高效,同时保持更优越的性能。

实验

总结

在这篇论文中,我们分析了流行的视觉语言模型,指出虽然增加视觉token的长度可以提高性能,但当前视觉token存在显著的冗余。

我们提出了一种简单的方法,即VisionZip,该方法在保持模型性能的同时,显著减少了视觉token的数量,从而大大提高了计算效率。

这种方法广泛应用于图像和视频理解任务,并适用于实际应用中的多轮对话。

VisionZip还指出了未来一个发展方向,即开发具有更低冗余能力的视觉编码器,以进一步提高视觉语言模型性能并处理更长的视频序列。

相关推荐
何小少6 小时前
从 Copilot 到 “Lab-pilot“:大语言模型在科学研究领域的应用现状与未来展望
人工智能·语言模型·copilot
倔强青铜三6 小时前
Django 6.0来袭!这些新特性,真的令人振奋!
人工智能·python·django
攻城狮7号6 小时前
阿里推出Qwen-Image-i2L开源工具:AI绘画的个性化革命来了
人工智能·ai绘画·qwen-image-i2l·阿里开源工具
GISer_Jing6 小时前
AI赋能前端营销领域全解析:业务、技术、应用场景等
前端·人工智能
永远都不秃头的程序员(互关)6 小时前
零基础掌握AI:实战机器学习全流程
人工智能·机器学习
神算大模型APi--天枢6466 小时前
从异构调度到边缘部署:国产大模型算力平台的后端开发能力拆解
大数据·人工智能·科技·架构·硬件架构
minhuan6 小时前
大模型应用:完整语音交互闭环:TTS+ASR融合系统可视化场景实践.22
人工智能·语音识别·tts·asr·语音大模型应用
song5016 小时前
鸿蒙 Flutter 日志系统:分级日志与鸿蒙 Hilog 集成
图像处理·人工智能·分布式·flutter·华为
Mintopia6 小时前
🚀 AIGC 如何重塑 Web 内容生产的价值链 —— 一场“硅基文艺复兴”的技术变革
人工智能·aigc·全栈
拉姆哥的小屋6 小时前
从原子到性能:机器学习如何重塑双金属催化剂的设计范式
人工智能·python·算法·机器学习