概率、似然、最小二乘

参考文章

通过例子理解最大似然估计
最大似然估计和最小二乘估计的区别与联系
SLAM的发展以及分类
移动机器人运动模型
深入理解最大似然估计与最大后验估计:概率中的两大估计法
从贝叶斯公式到卡尔曼滤波
Kalman滤波通俗理解+实际应用

简单总结

概率: 在一定条件下,某件事发生的可能性。概率越大,这件事越有可能发生。

举例:已知小车运动模型(模型)和当前速度分布(条件),求运动到B点的可能性多大(事件)。
似然: 某件事已经发生,在不同条件下的可能性。似然越大,这件事越可能在该条件下发生。

举例:已知小车运动模型(模型)和运动到了B点(事件),求小车速度分布(条件)最可能是多少?

最大似然估计: 从模型中抽取该n组样本观测值,最合理的参数估计量是让这个事件发生概率最大。

从概率角度出发,估计的是概率分布的参数,最大化似然概率函数。

最小二乘法: 从模型中抽取该n组样本观测值,最合理的参数估计量是使模型能最好地拟合样本数据。

从优化角度出发,估计的是拟合模型的参数,最小化估计值和观测值之差的平方和。

最大后验估计: 一种贝叶斯估计方法,结合了先验分布和似然函数。

相关推荐
渡我白衣5 小时前
AI应用层革命(七)——智能体的终极形态:认知循环体的诞生
人工智能·深度学习·神经网络·目标检测·microsoft·机器学习·自然语言处理
Wnq1007210 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴10 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案10 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵10 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower10 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_4461224610 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维11 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
大刘讲IT12 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx99101312 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习