概率、似然、最小二乘

参考文章

通过例子理解最大似然估计
最大似然估计和最小二乘估计的区别与联系
SLAM的发展以及分类
移动机器人运动模型
深入理解最大似然估计与最大后验估计:概率中的两大估计法
从贝叶斯公式到卡尔曼滤波
Kalman滤波通俗理解+实际应用

简单总结

概率: 在一定条件下,某件事发生的可能性。概率越大,这件事越有可能发生。

举例:已知小车运动模型(模型)和当前速度分布(条件),求运动到B点的可能性多大(事件)。
似然: 某件事已经发生,在不同条件下的可能性。似然越大,这件事越可能在该条件下发生。

举例:已知小车运动模型(模型)和运动到了B点(事件),求小车速度分布(条件)最可能是多少?

最大似然估计: 从模型中抽取该n组样本观测值,最合理的参数估计量是让这个事件发生概率最大。

从概率角度出发,估计的是概率分布的参数,最大化似然概率函数。

最小二乘法: 从模型中抽取该n组样本观测值,最合理的参数估计量是使模型能最好地拟合样本数据。

从优化角度出发,估计的是拟合模型的参数,最小化估计值和观测值之差的平方和。

最大后验估计: 一种贝叶斯估计方法,结合了先验分布和似然函数。

相关推荐
孔明兴汉1 小时前
大模型 ai coding 比较
人工智能
IT研究所1 小时前
IT 资产管理 (ITAM) 与 ITSM 协同实践:构建从资产到服务的闭环管理体系
大数据·运维·人工智能·科技·安全·低代码·自动化
沐曦股份MetaX2 小时前
基于内生复杂性的类脑脉冲大模型“瞬悉1.0”问世
人工智能·开源
power 雀儿2 小时前
张量基本运算
人工智能
陈天伟教授3 小时前
人工智能应用- 人工智能交叉:01. 破解蛋白质结构之谜
人工智能·神经网络·算法·机器学习·推荐算法
政安晨3 小时前
政安晨【人工智能项目随笔】使用OpenClaw的主节点协同子节点撰写大型技术前沿论文的实战指南
人工智能·ai agent·openclaw论文写作·openclaw论文写作经验·ai代理写论文·ai分布式协作·oepnclaw应用
大成京牌3 小时前
2026年京牌政策深度对比,三款优质车型选购推荐榜单探索
人工智能
xuxianliang5 小时前
第154章 “神谕”的低语(AI)
人工智能·程序员创富
geneculture5 小时前
人机互助新时代超级个体(OPC)的学术述评——基于人文学科与数理学科的双重视域
大数据·人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)
KG_LLM图谱增强大模型5 小时前
给具身智能装上图谱大模型大脑,7B小模型超越72B大模型!层次化知识图谱让复杂机器人规划能力暴增17%,能耗大幅降低
人工智能·机器人·知识图谱