概率、似然、最小二乘

参考文章

通过例子理解最大似然估计
最大似然估计和最小二乘估计的区别与联系
SLAM的发展以及分类
移动机器人运动模型
深入理解最大似然估计与最大后验估计:概率中的两大估计法
从贝叶斯公式到卡尔曼滤波
Kalman滤波通俗理解+实际应用

简单总结

概率: 在一定条件下,某件事发生的可能性。概率越大,这件事越有可能发生。

举例:已知小车运动模型(模型)和当前速度分布(条件),求运动到B点的可能性多大(事件)。
似然: 某件事已经发生,在不同条件下的可能性。似然越大,这件事越可能在该条件下发生。

举例:已知小车运动模型(模型)和运动到了B点(事件),求小车速度分布(条件)最可能是多少?

最大似然估计: 从模型中抽取该n组样本观测值,最合理的参数估计量是让这个事件发生概率最大。

从概率角度出发,估计的是概率分布的参数,最大化似然概率函数。

最小二乘法: 从模型中抽取该n组样本观测值,最合理的参数估计量是使模型能最好地拟合样本数据。

从优化角度出发,估计的是拟合模型的参数,最小化估计值和观测值之差的平方和。

最大后验估计: 一种贝叶斯估计方法,结合了先验分布和似然函数。

相关推荐
小牛头#4 小时前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
杨小扩5 小时前
第4章:实战项目一 打造你的第一个AI知识库问答机器人 (RAG)
人工智能·机器人
whaosoft-1435 小时前
51c~目标检测~合集4
人工智能
雪兽软件5 小时前
2025 年网络安全与人工智能发展趋势
人工智能·安全·web安全
元宇宙时间6 小时前
全球发展币GDEV:从中国出发,走向全球的数字发展合作蓝图
大数据·人工智能·去中心化·区块链
小黄人20256 小时前
自动驾驶安全技术的演进与NVIDIA的创新实践
人工智能·安全·自动驾驶
ZStack开发者社区7 小时前
首批 | 云轴科技ZStack加入施耐德电气技术本地化创新生态
人工智能·科技·云计算
X Y O8 小时前
神经网络初步学习3——数据与损失
人工智能·神经网络·学习
kngines8 小时前
【力扣(LeetCode)】数据挖掘面试题0002:当面对实时数据流时您如何设计和实现机器学习模型?
机器学习·数据挖掘·面试题·实时数据
唯创知音8 小时前
玩具语音方案选型决策OTP vs Flash 的成本功耗与灵活性
人工智能·语音识别