基于米尔全志T527开发板的OpenCV进行手势识别方案

本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志T527开发板)的OpenCV手势识别方案测试。


摘自优秀创作者-小火苗

米尔基于全志T527开发板

一、软件环境安装

1.安装OpenCV

复制代码
sudo apt-get install libopencv-dev python3-opencv

2.安装pip

复制代码
sudo apt-get install python3-pip

二、OpenCV手势识别步骤

​1.图像获取:从摄像头或其他图像源获取手部图像。使用OpenCV的VideoCapture类可以捕获视频流,或者使用imread函数加载图像。

2.图像预处理:对图像进行预处理,以提高特征提取的准确性。常用的预处理操作包括灰度化、滤波、边缘检测、二值化、噪声去除和形态学处理等。

  • 灰度化:将彩色图像转换为灰度图像,去除颜色信息,简化图像。

  • 滤波:使用滤波器去除图像中的噪声。

  • 边缘检测:使用边缘检测算法提取图像中的边缘信息。

  • 二值化:将灰度图像转换为二值图像,将像素值分为黑色和白色。

  • 形态学处理:使用形态学操作增强手势轮廓。

3.特征提取:从预处理后的图像中提取手部特征。常用的特征包括形状特征、纹理特征和运动轨迹特征等。

  • 形状特征:提取手部轮廓、面积、周长、质心等形状特征。

  • 纹理特征:提取手部皮肤纹理、皱纹等纹理特征。

  • 运动轨迹特征:提取手部运动轨迹、速度、加速度等运动轨迹特征。

4.分类和识别:使用机器学习算法对提取的特征进行分类,以识别特定的手势。

三、代码实现

复制代码
# -*- coding: utf-8 -*-
import cv2
def reg(x):
o1 = cv2.imread('paper.jpg',1)
o2 = cv2.imread('rock.jpg',1)
o3 = cv2.imread('scissors.jpg',1)  
gray1 = cv2.cvtColor(o1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(o2,cv2.COLOR_BGR2GRAY)
gray3 = cv2.cvtColor(o3,cv2.COLOR_BGR2GRAY)
xgray = cv2.cvtColor(x,cv2.COLOR_BGR2GRAY)
ret, binary1 = cv2.threshold(gray1,127,255,cv2.THRESH_BINARY)
ret, binary2 = cv2.threshold(gray2,127,255,cv2.THRESH_BINARY)
ret, binary3 = cv2.threshold(gray3,127,255,cv2.THRESH_BINARY)
xret, xbinary = cv2.threshold(xgray,127,255,cv2.THRESH_BINARY)
contours1, hierarchy = cv2.findContours(binary1,
cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)  
contours2, hierarchy = cv2.findContours(binary2,
cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)  
contours3, hierarchy = cv2.findContours(binary3,
cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)  
xcontours, hierarchy = cv2.findContours(xbinary,
cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)  
cnt1 = contours1[0]
cnt2 = contours2[0]
cnt3 = contours3[0]
x = xcontours[0]
ret=[]
ret.append(cv2.matchShapes(x,cnt1,1,0.0))
ret.append(cv2.matchShapes(x,cnt2,1,0.0))
ret.append(cv2.matchShapes(x,cnt3,1,0.0))
max_index = ret.index(min(ret))  #计算最大值索引
if max_index==0:
r="paper"
elif max_index==1:
r="rock"
else:
r="sessiors"
return r
t1=cv2.imread('test1.jpg',1)
t2=cv2.imread('test2.jpg',1)
t3=cv2.imread('test3.jpg',1)
# print(reg(t1))
# print(reg(t2))
# print(reg(t3))
# ===========显示处理结果==================
org=(0,60)
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale=2
color=(255,255,255)
thickness=3
cv2.putText(t1,reg(t1),org,font,fontScale,color,thickness)
cv2.putText(t2,reg(t2),org,font,fontScale,color,thickness)
cv2.putText(t3,reg(t3),org,font,fontScale,color,thickness)
cv2.imshow('test1',t1)
cv2.imshow('test2',t2)
cv2.imshow('test3',t3)
cv2.waitKey()
cv2.destroyAllWindows()

四、实践

1.程序运行

2、原始图像包含训练图像

3.识别结果

识别到了 剪刀 石头 布

原始图片

相关推荐
慧一居士15 分钟前
SpringBoot改造MCP服务器(StreamableHTTP)
人工智能
索迪迈科技20 分钟前
安防芯片 ISP 的白平衡统计数据对图像质量有哪些影响?
人工智能·计算机视觉·白平衡
AiTop10030 分钟前
腾讯推出AI CLI工具CodeBuddy,国内首家同时支持插件、IDE和CLI三种形态的AI编程工具厂商
ide·人工智能·ai·aigc·ai编程
山楂树下懒猴子1 小时前
ChatAI项目-ChatGPT-SDK组件工程
人工智能·chatgpt·junit·https·log4j·intellij-idea·mybatis
ViperL11 小时前
[优化算法]神经网络结构搜索(一)
深度学习·神经网络·计算机视觉
Learn Beyond Limits1 小时前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
AI360labs_atyun1 小时前
2025世界智博会,揭幕AI触手可及的科幻生活
人工智能·ai·音视频·生活
luoganttcc2 小时前
小鹏汽车 vla 算法最新进展和模型结构细节
人工智能·算法·汽车
算家计算2 小时前
面壁智能开源多模态大模型——MiniCPM-V 4.5本地部署教程:8B参数开启多模态“高刷”时代!
人工智能·开源
居然JuRan2 小时前
从零开始学大模型之大语言模型
人工智能