浅谈大模型之Agent(下篇)

大模型在Agent中的应用

随着人工智能技术的不断进步,大模型Agent已经成为了推动智能应用发展的关键力量,这些Agent不仅能够理解人类的语言,还能自主地执行复杂任务,从简单的聊天机器人到能够做出战略决策的企业级助手,大模型Agent正逐步改变着我们的生活和工作方式。本文通过两个实践案例,详细阐述了如何从0到1利用受限的FAQ文档和LLM能力,搭建一个智能问答Agent,供大家学习参考。

实践示例1

示例场景:智能运维专家Agent

本场景价值:

专业性强,对运维相关的问题 回答准确率高。

②通用性强,无需针对某一类领域问题单独重新训练模型。

具体方案如下:

数据(知识库) 通用的运维 FAQ文档数据,如下图所示:

预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

解决方案:RAG+ 大模型 (GPT-3.5)+ 命令执行脚本

整个流程框图:

**输入:**用户的运维相关问题

**输出:**根据问题输出的答案

实际效果如下:

Agent能回答通用运维知识(下图绿色框) Agent对于不知道的问题不瞎答(下图蓝色框)

实践示例2

**注:**与示例1不同之处在于:优先基于FAQ文档进行智能问答,若用户query与FAQ相关,则利用LLM和RAG能力进行回复;若与FAQ无关,则利用LLM通识能力和联网能力输出答案。

示例场景:智能运维专家Agent(plus版)

本场景价值:

专业性强,对运维相关的问题 回答准确率高。

②通用性强,无需针对某一类领域问题单独重新训练模型。

**③灵活性强,**能回答更多通用运维知识问题。

具体方案如下:

数据(知识库) 通用的运维 FAQ文档数据,如下图所示:

预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

解决方案:RAG+ 联网搜索 + 大模型 (GPT-3.5)+ 命令执行脚本

整个流程框图:

**输入:**用户的运维相关问题

**输出:**根据问题输出的答案

实际效果:

如果数据库和大模型本身都不知道答案,那么此Agent将会去联网搜答案( 如下图所示)

未来Agent发展可能面临的挑战

目前Agent技术还不是完全成熟,发展也面临一些瓶颈。比如:技术方面,LLM模型仍然不够强大,即使是用很强大的GPT4o在AI Agent应用时,仍然面临上下文容量有限,限制了历史信息、详细说明、API 调用上下文和响应;长期规划和有效探索解决方案空间仍然具有挑战性。

另外,在遇到意外错误时LLM很难调整计划,这使得它们与人类相比(从试错中学习)不太稳健等。其次,就是成本太高了,尤其是多智能体,因为其需要记忆和行动的思考量非常大。还有就是现阶段在很多场景,使用Agent还看不到非常大的提升,或者说能覆盖增加成本的提升。可以说,现阶段大部分Agent技术/平台还都处于研究阶段,现在一些比较固定的工作流程,或者有详细标准SOP的程序,都在封闭环境下进行。

因此,基于大模型搭建的Agent的能力边界也在不断突破。相信在未来Agent将拥有更强的学习能力,能够通过自我训练不断提高性能,减少对外部监督的需求。

相关推荐
SUPER526620 小时前
本地开发环境_spring-ai项目启动异常
java·人工智能·spring
上进小菜猪1 天前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩1 天前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方1 天前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
sakoba1 天前
flink消费pulsar
大数据·flink·pulsar
木头左1 天前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案1 天前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者1 天前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能
腾讯WeTest1 天前
「低成本、高质高效」WeTest AI翻译限时免费
人工智能
Lucas555555551 天前
现代C++四十不惑:AI时代系统软件的基石与新征程
开发语言·c++·人工智能