浅谈大模型之Agent(下篇)

大模型在Agent中的应用

随着人工智能技术的不断进步,大模型Agent已经成为了推动智能应用发展的关键力量,这些Agent不仅能够理解人类的语言,还能自主地执行复杂任务,从简单的聊天机器人到能够做出战略决策的企业级助手,大模型Agent正逐步改变着我们的生活和工作方式。本文通过两个实践案例,详细阐述了如何从0到1利用受限的FAQ文档和LLM能力,搭建一个智能问答Agent,供大家学习参考。

实践示例1

示例场景:智能运维专家Agent

本场景价值:

专业性强,对运维相关的问题 回答准确率高。

②通用性强,无需针对某一类领域问题单独重新训练模型。

具体方案如下:

数据(知识库) 通用的运维 FAQ文档数据,如下图所示:

预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

解决方案:RAG+ 大模型 (GPT-3.5)+ 命令执行脚本

整个流程框图:

**输入:**用户的运维相关问题

**输出:**根据问题输出的答案

实际效果如下:

Agent能回答通用运维知识(下图绿色框) Agent对于不知道的问题不瞎答(下图蓝色框)

实践示例2

**注:**与示例1不同之处在于:优先基于FAQ文档进行智能问答,若用户query与FAQ相关,则利用LLM和RAG能力进行回复;若与FAQ无关,则利用LLM通识能力和联网能力输出答案。

示例场景:智能运维专家Agent(plus版)

本场景价值:

专业性强,对运维相关的问题 回答准确率高。

②通用性强,无需针对某一类领域问题单独重新训练模型。

**③灵活性强,**能回答更多通用运维知识问题。

具体方案如下:

数据(知识库) 通用的运维 FAQ文档数据,如下图所示:

预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

解决方案:RAG+ 联网搜索 + 大模型 (GPT-3.5)+ 命令执行脚本

整个流程框图:

**输入:**用户的运维相关问题

**输出:**根据问题输出的答案

实际效果:

如果数据库和大模型本身都不知道答案,那么此Agent将会去联网搜答案( 如下图所示)

未来Agent发展可能面临的挑战

目前Agent技术还不是完全成熟,发展也面临一些瓶颈。比如:技术方面,LLM模型仍然不够强大,即使是用很强大的GPT4o在AI Agent应用时,仍然面临上下文容量有限,限制了历史信息、详细说明、API 调用上下文和响应;长期规划和有效探索解决方案空间仍然具有挑战性。

另外,在遇到意外错误时LLM很难调整计划,这使得它们与人类相比(从试错中学习)不太稳健等。其次,就是成本太高了,尤其是多智能体,因为其需要记忆和行动的思考量非常大。还有就是现阶段在很多场景,使用Agent还看不到非常大的提升,或者说能覆盖增加成本的提升。可以说,现阶段大部分Agent技术/平台还都处于研究阶段,现在一些比较固定的工作流程,或者有详细标准SOP的程序,都在封闭环境下进行。

因此,基于大模型搭建的Agent的能力边界也在不断突破。相信在未来Agent将拥有更强的学习能力,能够通过自我训练不断提高性能,减少对外部监督的需求。

相关推荐
开心的AI频道4 分钟前
2025年AI手机集中上市,三星Galaxy S25系列上市
人工智能·智能手机
kakaZhui8 分钟前
【llm对话系统】大模型 Llama 源码分析之 LoRA 微调
pytorch·深度学习·chatgpt·aigc·llama
eso198312 分钟前
深度学习模型在汽车自动驾驶领域的应用
深度学习·自动驾驶·汽车
IT古董38 分钟前
【漫话机器学习系列】066.贪心算法(Greedy Algorithms)
人工智能·机器学习·贪心算法
Blockchina39 分钟前
如何使用 DeepSeek 和 Dexscreener 构建免费的 AI 加密交易机器人?
人工智能·python·ai编程·deepseek
xwz小王子42 分钟前
ICLR 2025收录论文:为什么动作分块对于机器人灵活性至关重要?
人工智能·机器人
梦云澜43 分钟前
论文阅读(九):通过概率图模型建立连锁不平衡模型和进行关联研究:最新进展访问之旅
论文阅读·人工智能·深度学习
产品媛Gloria Deng1 小时前
分享| RL-GPT 框架通过慢agent和快agent结合提高AI解决复杂任务的能力-Arxiv
人工智能·gpt·ai·agent·ai智能体
prince_zxill2 小时前
机器学习优化算法:从梯度下降到Adam及其变种
人工智能·深度学习