浅谈大模型之Agent(下篇)

大模型在Agent中的应用

随着人工智能技术的不断进步,大模型Agent已经成为了推动智能应用发展的关键力量,这些Agent不仅能够理解人类的语言,还能自主地执行复杂任务,从简单的聊天机器人到能够做出战略决策的企业级助手,大模型Agent正逐步改变着我们的生活和工作方式。本文通过两个实践案例,详细阐述了如何从0到1利用受限的FAQ文档和LLM能力,搭建一个智能问答Agent,供大家学习参考。

实践示例1

示例场景:智能运维专家Agent

本场景价值:

专业性强,对运维相关的问题 回答准确率高。

②通用性强,无需针对某一类领域问题单独重新训练模型。

具体方案如下:

数据(知识库) 通用的运维 FAQ文档数据,如下图所示:

预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

解决方案:RAG+ 大模型 (GPT-3.5)+ 命令执行脚本

整个流程框图:

**输入:**用户的运维相关问题

**输出:**根据问题输出的答案

实际效果如下:

Agent能回答通用运维知识(下图绿色框) Agent对于不知道的问题不瞎答(下图蓝色框)

实践示例2

**注:**与示例1不同之处在于:优先基于FAQ文档进行智能问答,若用户query与FAQ相关,则利用LLM和RAG能力进行回复;若与FAQ无关,则利用LLM通识能力和联网能力输出答案。

示例场景:智能运维专家Agent(plus版)

本场景价值:

专业性强,对运维相关的问题 回答准确率高。

②通用性强,无需针对某一类领域问题单独重新训练模型。

**③灵活性强,**能回答更多通用运维知识问题。

具体方案如下:

数据(知识库) 通用的运维 FAQ文档数据,如下图所示:

预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

解决方案:RAG+ 联网搜索 + 大模型 (GPT-3.5)+ 命令执行脚本

整个流程框图:

**输入:**用户的运维相关问题

**输出:**根据问题输出的答案

实际效果:

如果数据库和大模型本身都不知道答案,那么此Agent将会去联网搜答案( 如下图所示)

未来Agent发展可能面临的挑战

目前Agent技术还不是完全成熟,发展也面临一些瓶颈。比如:技术方面,LLM模型仍然不够强大,即使是用很强大的GPT4o在AI Agent应用时,仍然面临上下文容量有限,限制了历史信息、详细说明、API 调用上下文和响应;长期规划和有效探索解决方案空间仍然具有挑战性。

另外,在遇到意外错误时LLM很难调整计划,这使得它们与人类相比(从试错中学习)不太稳健等。其次,就是成本太高了,尤其是多智能体,因为其需要记忆和行动的思考量非常大。还有就是现阶段在很多场景,使用Agent还看不到非常大的提升,或者说能覆盖增加成本的提升。可以说,现阶段大部分Agent技术/平台还都处于研究阶段,现在一些比较固定的工作流程,或者有详细标准SOP的程序,都在封闭环境下进行。

因此,基于大模型搭建的Agent的能力边界也在不断突破。相信在未来Agent将拥有更强的学习能力,能够通过自我训练不断提高性能,减少对外部监督的需求。

相关推荐
小熊bdg5 分钟前
3D 生成重建037-GAUSSIANANYTHING通过点云与外观的混合策略进行3dgs生成
人工智能·3d·aigc
德林恩宝5 分钟前
从深度图到 3D 网格与点云:完整实现
人工智能·计算机视觉·3d
喵叔哟22 分钟前
19. 【.NET 8 实战--孢子记账--从单体到微服务】--记账模块--收支记录
大数据·微服务·.net
夏天的遥遥漓曦24 分钟前
CentOS7下,hive4.0.0安装部署
大数据·hive·hadoop·mysql·adb
程序边界26 分钟前
ChatGPT 4:解锁AI文案、绘画与视频创作新纪元
人工智能·chatgpt·音视频
bigdata-rookie44 分钟前
ElasticSearch 简介
大数据·elasticsearch·搜索引擎
有颜有货1 小时前
数字产业化和产业数字化到底是什么?
大数据·人工智能·产业数字化·数字产业化
ai-guoyang1 小时前
tensorflow gpu版安装(直接anaconda虚拟环境中配置cuda,无需主机安装cuda、cudnn)
深度学习·tensorflow·cuda·anaconda
ai_xiaogui1 小时前
【AIStarter】告别复杂转换 - MinerU整合包实现PDF到Markdown的无缝转变
人工智能·ai作画·pdf·语音识别·ai写作·ai软件