浅谈大模型之Agent(下篇)

大模型在Agent中的应用

随着人工智能技术的不断进步,大模型Agent已经成为了推动智能应用发展的关键力量,这些Agent不仅能够理解人类的语言,还能自主地执行复杂任务,从简单的聊天机器人到能够做出战略决策的企业级助手,大模型Agent正逐步改变着我们的生活和工作方式。本文通过两个实践案例,详细阐述了如何从0到1利用受限的FAQ文档和LLM能力,搭建一个智能问答Agent,供大家学习参考。

实践示例1

示例场景:智能运维专家Agent

本场景价值:

专业性强,对运维相关的问题 回答准确率高。

②通用性强,无需针对某一类领域问题单独重新训练模型。

具体方案如下:

数据(知识库) 通用的运维 FAQ文档数据,如下图所示:

预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

解决方案:RAG+ 大模型 (GPT-3.5)+ 命令执行脚本

整个流程框图:

**输入:**用户的运维相关问题

**输出:**根据问题输出的答案

实际效果如下:

Agent能回答通用运维知识(下图绿色框) Agent对于不知道的问题不瞎答(下图蓝色框)

实践示例2

**注:**与示例1不同之处在于:优先基于FAQ文档进行智能问答,若用户query与FAQ相关,则利用LLM和RAG能力进行回复;若与FAQ无关,则利用LLM通识能力和联网能力输出答案。

示例场景:智能运维专家Agent(plus版)

本场景价值:

专业性强,对运维相关的问题 回答准确率高。

②通用性强,无需针对某一类领域问题单独重新训练模型。

**③灵活性强,**能回答更多通用运维知识问题。

具体方案如下:

数据(知识库) 通用的运维 FAQ文档数据,如下图所示:

预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

解决方案:RAG+ 联网搜索 + 大模型 (GPT-3.5)+ 命令执行脚本

整个流程框图:

**输入:**用户的运维相关问题

**输出:**根据问题输出的答案

实际效果:

如果数据库和大模型本身都不知道答案,那么此Agent将会去联网搜答案( 如下图所示)

未来Agent发展可能面临的挑战

目前Agent技术还不是完全成熟,发展也面临一些瓶颈。比如:技术方面,LLM模型仍然不够强大,即使是用很强大的GPT4o在AI Agent应用时,仍然面临上下文容量有限,限制了历史信息、详细说明、API 调用上下文和响应;长期规划和有效探索解决方案空间仍然具有挑战性。

另外,在遇到意外错误时LLM很难调整计划,这使得它们与人类相比(从试错中学习)不太稳健等。其次,就是成本太高了,尤其是多智能体,因为其需要记忆和行动的思考量非常大。还有就是现阶段在很多场景,使用Agent还看不到非常大的提升,或者说能覆盖增加成本的提升。可以说,现阶段大部分Agent技术/平台还都处于研究阶段,现在一些比较固定的工作流程,或者有详细标准SOP的程序,都在封闭环境下进行。

因此,基于大模型搭建的Agent的能力边界也在不断突破。相信在未来Agent将拥有更强的学习能力,能够通过自我训练不断提高性能,减少对外部监督的需求。

相关推荐
盼小辉丶2 分钟前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输10 分钟前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩1 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
ywyy67981 小时前
短剧系统开发定制全流程解析:从需求分析到上线的专业指南
大数据·需求分析·短剧·推客系统·推客小程序·短剧系统开发·海外短剧系统开发
kebijuelun1 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc
算家计算1 小时前
ComfyUI-v0.3.43本地部署教程:新增 Omnigen 2 支持,复杂图像任务一步到位!
人工智能·开源
新智元1 小时前
毕业 7 年,身价破亿!清北 AI 天团血洗硅谷,奥特曼被逼分天价股份
人工智能·openai
新智元1 小时前
刚刚,苹果大模型团队负责人叛逃 Meta!华人 AI 巨星 + 1,年薪飙至 9 位数
人工智能·openai
Cyltcc2 小时前
如何安装和使用 Claude Code 教程 - Windows 用户篇
人工智能·claude·visual studio code
吹风看太阳2 小时前
机器学习16-总体架构
人工智能·机器学习