往期精彩内容:
时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较
EMD变体分解效果最好算法------CEEMDAN(五)-CSDN博客
拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客
CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客
基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客
基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客
VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客
基于麻雀优化算法SSA的预测模型------代码全家桶-CSDN博客
VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客
风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客
高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客
VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客
独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客
VMD + CEEMDAN 二次分解------创新预测模型合集-CSDN博客
独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客
CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客
时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客
独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客
独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客
全家桶简介:
● 环境框架:python 3.9 pytorch 1.8 及其以上版本均可运行
● 使用对象:论文需求、毕业设计需求者
● 代码保证:代码注释详细、即拿即可跑通。
包括完整流程数据代码处理:
多步预测数据集制作、数据加载、模型定义、参数设置、模型训练、模型测试、预测可视化、模型评估、************ 多步预测 (如何加载训练好的模型进行外预测 )
配有代码、文件介绍:
前言
本文基于前期介绍的电力变压器(文末附数据集),介绍一种基于CNN-LSTM网络的多步预测模型。
电力变压器数据集的详细介绍可以参考下文:
1 电力变压器数据预处理与可视化
1.1 导入数据
1.2 多步预测预处理
2 基于CNN-LSTM的多步预测模型
2.1 定义CNN-LSTM网络模型
2.2 设置参数,训练模型
50个epoch,MSE 为0.000311,CNN-LSTM多步预测模型预测效果显著,模型能够充分提取序列的时空特征,收敛速度快,性能优越,预测精度高,适当调整模型参数,还可以进一步提高模型预测表现。
注意调整参数:
-
可以适当增加CNN层数和每层通道数,微调学习率;
-
调整LSTM层数和每层神经元个数,增加更多的 epoch (注意防止过拟合)
-
可以改变滑动窗口长度(设置合适的窗口长度)