优化算法(SGD,RMSProp,Ada)

概述

优化算法就是专门研究如何优化模型的。

常用优化算法

随机梯度下降(SGD)

损失函数是模型参数的函数。因此可以求出损失函数对于模型参数的梯度。可以沿着梯度方向进行参数更新。

SGD存在的问题

SGD + Momentum

该算法主要是为了解决SGD的抖动问题的。

具体实现:

其实就是在计算本次梯度时,会考虑过去的梯度值。例如将 ρ \rho ρ设置为0.9,那么此刻的梯度有 90 % 90\% 90%的部分来自历史值,剩余 10 % 10\% 10%来自于当前的计算值。这样更新方向就不会乱抖动了。

RMSProp

主要作用:==沿着"陡峭"方向的优化变慢;沿着"平缓"方向的优化加快。==稳定优化速度(更新步长)

SGD我们不是要设定学习率参数麻,而RMS可以在训练过程中动态调整参数。

RMSprop的更新规则如下:

  1. 初始化参数 θ \theta θ,设置学习率 η \eta η,衰减系数 ρ \rho ρ(通常设为0.9),以及数值稳定性的小常数 ϵ \epsilon ϵ(通常设为 1e-8 );
  2. 在每次迭代中,计算参数 θ \theta θ 的梯度 g g g ;
  3. 更新累积平方梯度的指数加权移动平均 r r r : r = ρ r + ( 1 − ρ ) g 2 r = \rho r+(1-\rho)g^2 r=ρr+(1−ρ)g2
  4. 计算参数更新量: Δ θ = η r + ϵ ⋅ g \Delta\theta = \frac{\eta}{\sqrt{r + \epsilon}} \cdot g Δθ=r+ϵ η⋅g
  5. 更新参数 θ \theta θ: θ = θ − Δ θ \theta = \theta - \Delta\theta θ=θ−Δθ

AdaGrad算法

与RMS类似的算法,只不过在处理累计梯度的方法上不同

  1. 初始化参数 θ \theta θ,设置学习率 η \eta η,以及数值稳定性的小常数 ϵ \epsilon ϵ(通常设为 1e-8 );
  2. 在每次迭代中,计算参数 θ \theta θ 的梯度 g g g ;
  3. 更新累积平方梯度的指数加权移动平均 r r r,初始为0 : r = r + g 2 r = r+g^2 r=r+g2
  4. 计算参数更新量: Δ θ = η r + ϵ ⋅ g \Delta\theta = \frac{\eta}{\sqrt{r + \epsilon}} \cdot g Δθ=r+ϵ η⋅g
  5. 更新参数 θ \theta θ: θ = θ − Δ θ \theta = \theta - \Delta\theta θ=θ−Δθ

AdaGrad VS RMSProp

AdaGrad: 累积所有过去的梯度平方(无遗忘因子)。这意味着它会不断地累积梯度信息,导致学习率随着时间逐渐减小,可能在后期变得过小,以至于无法继续有效更新;

RMSprop: 使用指数加权平均来累积过去的梯度平方(有遗忘因子)。这种方式使得算法对最近的梯度给予更多的权重,而对旧的梯度逐渐"遗忘",从而避免了学习率过快减小的问题。

学习率的更新

除了通过优化算法来更新学习率之外,我们也可以手动更新学习率

相关推荐
SmartBrain20 分钟前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t1 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华2 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu3 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师4 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8286 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
风中的微尘6 小时前
39.网络流入门
开发语言·网络·c++·算法
研梦非凡6 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成6 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃6 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode