优化算法(SGD,RMSProp,Ada)

概述

优化算法就是专门研究如何优化模型的。

常用优化算法

随机梯度下降(SGD)

损失函数是模型参数的函数。因此可以求出损失函数对于模型参数的梯度。可以沿着梯度方向进行参数更新。

SGD存在的问题

SGD + Momentum

该算法主要是为了解决SGD的抖动问题的。

具体实现:

其实就是在计算本次梯度时,会考虑过去的梯度值。例如将 ρ \rho ρ设置为0.9,那么此刻的梯度有 90 % 90\% 90%的部分来自历史值,剩余 10 % 10\% 10%来自于当前的计算值。这样更新方向就不会乱抖动了。

RMSProp

主要作用:==沿着"陡峭"方向的优化变慢;沿着"平缓"方向的优化加快。==稳定优化速度(更新步长)

SGD我们不是要设定学习率参数麻,而RMS可以在训练过程中动态调整参数。

RMSprop的更新规则如下:

  1. 初始化参数 θ \theta θ,设置学习率 η \eta η,衰减系数 ρ \rho ρ(通常设为0.9),以及数值稳定性的小常数 ϵ \epsilon ϵ(通常设为 1e-8 );
  2. 在每次迭代中,计算参数 θ \theta θ 的梯度 g g g ;
  3. 更新累积平方梯度的指数加权移动平均 r r r : r = ρ r + ( 1 − ρ ) g 2 r = \rho r+(1-\rho)g^2 r=ρr+(1−ρ)g2
  4. 计算参数更新量: Δ θ = η r + ϵ ⋅ g \Delta\theta = \frac{\eta}{\sqrt{r + \epsilon}} \cdot g Δθ=r+ϵ η⋅g
  5. 更新参数 θ \theta θ: θ = θ − Δ θ \theta = \theta - \Delta\theta θ=θ−Δθ

AdaGrad算法

与RMS类似的算法,只不过在处理累计梯度的方法上不同

  1. 初始化参数 θ \theta θ,设置学习率 η \eta η,以及数值稳定性的小常数 ϵ \epsilon ϵ(通常设为 1e-8 );
  2. 在每次迭代中,计算参数 θ \theta θ 的梯度 g g g ;
  3. 更新累积平方梯度的指数加权移动平均 r r r,初始为0 : r = r + g 2 r = r+g^2 r=r+g2
  4. 计算参数更新量: Δ θ = η r + ϵ ⋅ g \Delta\theta = \frac{\eta}{\sqrt{r + \epsilon}} \cdot g Δθ=r+ϵ η⋅g
  5. 更新参数 θ \theta θ: θ = θ − Δ θ \theta = \theta - \Delta\theta θ=θ−Δθ

AdaGrad VS RMSProp

AdaGrad: 累积所有过去的梯度平方(无遗忘因子)。这意味着它会不断地累积梯度信息,导致学习率随着时间逐渐减小,可能在后期变得过小,以至于无法继续有效更新;

RMSprop: 使用指数加权平均来累积过去的梯度平方(有遗忘因子)。这种方式使得算法对最近的梯度给予更多的权重,而对旧的梯度逐渐"遗忘",从而避免了学习率过快减小的问题。

学习率的更新

除了通过优化算法来更新学习率之外,我们也可以手动更新学习率

相关推荐
cs麦子9 小时前
C语言--详解--指针--下
c语言·数据结构·算法
IT_陈寒9 小时前
SpringBoot 3.2新特性实战:这5个隐藏技巧让你的应用性能飙升50%
前端·人工智能·后端
aitoolhub9 小时前
考研论文引用格式 AI 校验实操:工具合集 + 技术原理
c语言·人工智能·考研·aigc
Fnetlink19 小时前
推动“AI+ 网络安全”深度融合与创新发展
人工智能·安全·web安全
Tisfy9 小时前
LeetCode 2536.子矩阵元素加 1:二维差分数组
算法·leetcode·矩阵
xuehaikj9 小时前
苹果质量检测与分类 - YOLO13结合RFCAConv实现
人工智能·数据挖掘
xuehaikj9 小时前
芦笋嫩茎形态分类与识别_YOLO11-C3k2-MambaOut-SFSC模型实现_1
人工智能·数据挖掘
q***062910 小时前
Spring Boot + Spring AI快速体验
人工智能·spring boot·spring
云雾J视界10 小时前
碳中和终极武器——嵌入式AI重构能源管理战局
人工智能·重构·算力·碳中和·能源管理·嵌入式ai·低功耗硬件
ZKNOW甄知科技10 小时前
重构企业运维智慧:低代码 ITSM 知识管理平台的创新与实践
大数据·运维·人工智能·程序人生·低代码·重构·it