BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)

Matlab实现BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)

目录

分类效果



基本描述

1.MATLAB实现BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)分类预测(完整源码和数据)

2.直接替换数据即可使用,保证程序可正常运行。

3.程序语言为matlab,程序可出分类效果图,混淆矩阵图。

运行环境matlab2023b及以上。

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

clike 复制代码
%%  参数设置
%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);

% %%  数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
% 
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);

%%  性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;

%%  绘图
figure()         
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid


figure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid

%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
    
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
WGS.10 分钟前
paddle.utils.run_check() 报错 nccl 找不到
深度学习·paddle
极客BIM工作室14 分钟前
详解 KL 散度的反向传播计算:以三分类神经网络为例
神经网络·机器学习·分类
自然语18 分钟前
数字生已经进化到一个分水岭面临选择?先实现“动态识别“还是先实现“特征信息归纳分类“,文中给出以给出答案,大家选哪个方向?
人工智能·分类·数据挖掘
小毅&Nora42 分钟前
【人工智能】【深度学习】 ⑧ 一文讲清Transformer工作原理:从自注意力到大语言模型的革命
人工智能·深度学习·transformer
hjs_deeplearning42 分钟前
应用篇#4:Qwen2视觉语言模型(VLM)的服务器部署
服务器·人工智能·python·深度学习·语言模型
荒野火狐1 小时前
【强化学习】关于PPO收敛问题
python·深度学习·机器学习·强化学习
nwsuaf_huasir1 小时前
Elsevier投稿系统编译latex文件参考文献显示为问号
深度学习
oliveray1 小时前
动手搭建Flamingo(VQA)
人工智能·深度学习·vlms
非著名架构师1 小时前
气象驱动的需求预测:零售企业如何通过气候数据分析实现库存精准控制
人工智能·深度学习·数据分析·transformer·风光功率预测·高精度天气预报数据
算法与编程之美2 小时前
理解pytorch中的L2正则项
人工智能·pytorch·python·深度学习·机器学习