四、使用langchain搭建RAG:金融问答机器人--构建web应用,问答链,带记忆功能

经过前面3节完成金融问答机器人基本流程,这章将使用Gradio构建web应用,同时加入memory令提示模板带有记忆的,使用LCEL构建问答链。

加载向量数据库

python 复制代码
from langchain.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
import os

# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="m3e-base")

# 向量数据库持久化路径
persist_directory = 'data_base/chroma'

# 加载数据库
vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embeddings
)
retriever=vectordb.as_retriever()

加载LLM

python 复制代码
import os
os.environ["DASHSCOPE_API_KEY"] = 'sk-***'

from langchain_community.llms import Tongyi
llm = Tongyi()

创建memory

python 复制代码
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(
    memory_key="chat_history",  # 与 prompt 的输入变量保持一致。
    return_messages=True  # 将以消息列表的形式返回聊天记录,而不是单个字符串
)

构建新的问答链,使用带有记忆的提示模板

python 复制代码
# 构建新的问答链,使用带有记忆的提示模板
from langchain.chains import ConversationalRetrievalChain
def chatqwen_chat(message, history):
     #构建对话问答链
     qa = ConversationalRetrievalChain.from_llm(
		llm,
		retriever=retriever,
		memory=memory,
		verbose=True,
	 )
     result = qa({"question": message})
     return result['answer']

定义gradio web app

python 复制代码
import gradio as gr
def launch_gradio():

    iface = gr.ChatInterface(
        fn=chatqwen_chat,
        title="金融RAG问答机器人",
        chatbot=gr.Chatbot(height=400),
    )
    iface.launch(share=True, server_name="0.0.0.0")

启动 Gradio 服务

python 复制代码
# 启动 Gradio 服务
launch_gradio()

测试

Gradio 服务启动成功后,可以使用浏览器f访问web应用: http://127.0.0.1:7861/

从上面第二个问题看出,有记忆到之前的问题。

下图是整个访问链条的LOG:

总结

使用Gradio构建web应用已完成,如果想独立部署项目,可以放到py文件中,然后使用下面代码启动

python 复制代码
if __name__ == "__main__": 
    # 启动 Gradio 服务
    launch_gradio()

启动脚本: python ***.py

如果是使用conda 虚拟环境则: **\envs\langchain_qwen\python **.py (带上虚拟环境的目录)

项目源代码: https://gitee.com/ailianshuo/finance-bot

相关推荐
这是个栗子11 分钟前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
瞎某某Blinder30 分钟前
DFT学习记录[4] 电子和空穴的有效质量计算全流程
python·学习
Liue612312311 小时前
基于YOLO11-C3k2-Faster-CGLU的路面落叶检测与识别系统实现
python
硅谷秋水2 小时前
RoboBrain 2.5:视野中的深度,思维中的时间
深度学习·机器学习·计算机视觉·语言模型·机器人
~央千澈~2 小时前
抖音弹幕游戏开发之第8集:pyautogui基础 - 模拟键盘操作·优雅草云桧·卓伊凡
网络·python·websocket·网络协议
占疏2 小时前
列表分成指定的份数
python
Gaosiy2 小时前
脑电python分析库MNE安装
python·脑机接口·脑电·mne
向量引擎小橙3 小时前
视觉艺术的“奇点”:深度拆解 Gemini-3-Pro-Image-Preview 绘画模型,看这只“香蕉”如何重塑 AI 创作逻辑!
人工智能·python·gpt·深度学习·llama
Web3VentureView4 小时前
X Space AMA回顾|预测熊市底部:当市场寻找价格,SYNBO正在构建未来
人工智能·物联网·金融·web3·区块链
yaoxin5211234 小时前
324. Java Stream API - 实现 Collector 接口:自定义你的流式收集器
java·windows·python