四、使用langchain搭建RAG:金融问答机器人--构建web应用,问答链,带记忆功能

经过前面3节完成金融问答机器人基本流程,这章将使用Gradio构建web应用,同时加入memory令提示模板带有记忆的,使用LCEL构建问答链。

加载向量数据库

python 复制代码
from langchain.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
import os

# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="m3e-base")

# 向量数据库持久化路径
persist_directory = 'data_base/chroma'

# 加载数据库
vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embeddings
)
retriever=vectordb.as_retriever()

加载LLM

python 复制代码
import os
os.environ["DASHSCOPE_API_KEY"] = 'sk-***'

from langchain_community.llms import Tongyi
llm = Tongyi()

创建memory

python 复制代码
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(
    memory_key="chat_history",  # 与 prompt 的输入变量保持一致。
    return_messages=True  # 将以消息列表的形式返回聊天记录,而不是单个字符串
)

构建新的问答链,使用带有记忆的提示模板

python 复制代码
# 构建新的问答链,使用带有记忆的提示模板
from langchain.chains import ConversationalRetrievalChain
def chatqwen_chat(message, history):
     #构建对话问答链
     qa = ConversationalRetrievalChain.from_llm(
		llm,
		retriever=retriever,
		memory=memory,
		verbose=True,
	 )
     result = qa({"question": message})
     return result['answer']

定义gradio web app

python 复制代码
import gradio as gr
def launch_gradio():

    iface = gr.ChatInterface(
        fn=chatqwen_chat,
        title="金融RAG问答机器人",
        chatbot=gr.Chatbot(height=400),
    )
    iface.launch(share=True, server_name="0.0.0.0")

启动 Gradio 服务

python 复制代码
# 启动 Gradio 服务
launch_gradio()

测试

Gradio 服务启动成功后,可以使用浏览器f访问web应用: http://127.0.0.1:7861/

从上面第二个问题看出,有记忆到之前的问题。

下图是整个访问链条的LOG:

总结

使用Gradio构建web应用已完成,如果想独立部署项目,可以放到py文件中,然后使用下面代码启动

python 复制代码
if __name__ == "__main__": 
    # 启动 Gradio 服务
    launch_gradio()

启动脚本: python ***.py

如果是使用conda 虚拟环境则: **\envs\langchain_qwen\python **.py (带上虚拟环境的目录)

项目源代码: https://gitee.com/ailianshuo/finance-bot

相关推荐
dlraba8026 小时前
用 Python+OpenCV 实现实时文档扫描:从摄像头捕捉到透视矫正全流程
开发语言·python·opencv
小熊出擊6 小时前
【pytest】fixture 内省(Introspection)测试上下文
python·单元测试·pytest
njsgcs6 小时前
sse mcp flask 开放mcp服务到内网
后端·python·flask·sse·mcp
一人の梅雨7 小时前
1688 店铺商品全量采集与智能分析:从接口调用到供应链数据挖掘
开发语言·python·php
realhuizhu7 小时前
📚 技术人的阅读提效神器:多语言智能中文摘要生成指令
人工智能·ai·chatgpt·prompt·提示词·总结·deepseek·摘要
Terio_my7 小时前
Python制作12306查票工具:从零构建铁路购票信息查询系统
开发语言·python·microsoft
Love__Tay7 小时前
【数据分析与可视化】2025年一季度金融业主要行业资产、负债、权益结构与增速对比
金融·excel·pandas·matplotlib
万粉变现经纪人8 小时前
如何解决 pip install -r requirements.txt 约束文件 constraints.txt 仅允许固定版本(未锁定报错)问题
开发语言·python·r语言·django·beautifulsoup·pandas·pip
站大爷IP8 小时前
Python定时任务实战:APScheduler从入门到精通
python
Fairy_sevenseven8 小时前
[1]python爬虫入门,爬取豆瓣电影top250实践
开发语言·爬虫·python