K-均值聚类算法

K-均值聚类算法是一种经典的非监督学习算法,用于将数据集中的样本划分为K个不同的簇(cluster)。其目标是使得同一簇内的样本相似度最高,不同簇之间的样本相似度最低。

算法步骤如下:

  1. 初始:随机选择K个初始聚类中心点。
  2. 分配:计算每个样本到各个聚类中心的距离,并将样本分配给距离最近的聚类中心。
  3. 更新:更新聚类中心点,使用每个簇中样本的均值作为新的聚类中心。
  4. 迭代:重复步骤2和步骤3,直到聚类中心不再发生变化或达到预定迭代次数。

K-均值聚类算法的优点包括:

  1. 算法简单且易于实现。
  2. 对大规模数据集也能够有效处理。
  3. 可以用于数据预处理和聚类结果的初始猜测。

K-均值聚类算法的缺点包括:

  1. 需要预先指定簇的数量K,但在实际应用中往往难以确定合适的K值。
  2. 对初始聚类中心的选择敏感,不同的初始聚类中心可能导致不同的聚类结果。
  3. 对于不同形状、大小、密度的簇效果不佳。
  4. 对离群点敏感,离群点可能会影响聚类结果。

值得注意的是,K-均值算法是基于欧氏距离的,因此在应用之前需要对数据进行标准化处理,以避免某些特征对距离计算的影响过大。另外,为了克服K-均值算法的一些缺点,研究人员也提出了许多改进的版本,如K-均值++、K-均值++、K-均值大数据版本等。

相关推荐
前端炒粉3 小时前
35.LRU 缓存
开发语言·javascript·数据结构·算法·缓存·js
断剑zou天涯5 小时前
【算法笔记】窗口内最大值或最小值的更新结构
java·笔记·算法
smj2302_796826525 小时前
解决leetcode第3753题范围内总波动值II
python·算法·leetcode
骑着猪去兜风.7 小时前
线段树(二)
数据结构·算法
fengfuyao9858 小时前
竞争性自适应重加权算法(CARS)的MATLAB实现
算法
散峰而望8 小时前
C++数组(二)(算法竞赛)
开发语言·c++·算法·github
leoufung8 小时前
LeetCode 92 反转链表 II 全流程详解
算法·leetcode·链表
wyhwust9 小时前
交换排序法&冒泡排序法& 选择排序法&插入排序的算法步骤
数据结构·算法·排序算法
利刃大大9 小时前
【动态规划:背包问题】完全平方数
c++·算法·动态规划·背包问题·完全背包
wyhwust9 小时前
数组----插入一个数到有序数列中
java·数据结构·算法