K-均值聚类算法

K-均值聚类算法是一种经典的非监督学习算法,用于将数据集中的样本划分为K个不同的簇(cluster)。其目标是使得同一簇内的样本相似度最高,不同簇之间的样本相似度最低。

算法步骤如下:

  1. 初始:随机选择K个初始聚类中心点。
  2. 分配:计算每个样本到各个聚类中心的距离,并将样本分配给距离最近的聚类中心。
  3. 更新:更新聚类中心点,使用每个簇中样本的均值作为新的聚类中心。
  4. 迭代:重复步骤2和步骤3,直到聚类中心不再发生变化或达到预定迭代次数。

K-均值聚类算法的优点包括:

  1. 算法简单且易于实现。
  2. 对大规模数据集也能够有效处理。
  3. 可以用于数据预处理和聚类结果的初始猜测。

K-均值聚类算法的缺点包括:

  1. 需要预先指定簇的数量K,但在实际应用中往往难以确定合适的K值。
  2. 对初始聚类中心的选择敏感,不同的初始聚类中心可能导致不同的聚类结果。
  3. 对于不同形状、大小、密度的簇效果不佳。
  4. 对离群点敏感,离群点可能会影响聚类结果。

值得注意的是,K-均值算法是基于欧氏距离的,因此在应用之前需要对数据进行标准化处理,以避免某些特征对距离计算的影响过大。另外,为了克服K-均值算法的一些缺点,研究人员也提出了许多改进的版本,如K-均值++、K-均值++、K-均值大数据版本等。

相关推荐
Promise48537 分钟前
贝尔曼公式的迭代求解笔记
笔记·算法
福尔摩斯张2 小时前
Linux进程间通信(IPC)机制深度解析与实践指南
linux·运维·服务器·数据结构·c++·算法
你好~每一天2 小时前
未来3年,最值得拿下的5个AI证书!
数据结构·人工智能·算法·sqlite·hbase·散列表·模拟退火算法
杰克尼2 小时前
3. 分巧克力
java·数据结构·算法
zmzb01033 小时前
C++课后习题训练记录Day39
数据结构·c++·算法
修一呀3 小时前
【企业级对话处理】自动估计说话人数 + 声纹聚类 + ASR 转写(FunASR + ModelScope + ClearVoice)
机器学习·数据挖掘·聚类
Ayanami_Reii3 小时前
进阶数学算法-取石子游戏(ZJOI2009)
数学·算法·游戏·动态规划·区间dp·博弈论
一只小小汤圆3 小时前
已知圆弧的起点、终点、凸度 求圆弧的圆心
算法
丸码3 小时前
Java HashMap深度解析
算法·哈希算法·散列表
算法与编程之美4 小时前
Java数组动态扩容
java·开发语言·python·算法