K-均值聚类算法

K-均值聚类算法是一种经典的非监督学习算法,用于将数据集中的样本划分为K个不同的簇(cluster)。其目标是使得同一簇内的样本相似度最高,不同簇之间的样本相似度最低。

算法步骤如下:

  1. 初始:随机选择K个初始聚类中心点。
  2. 分配:计算每个样本到各个聚类中心的距离,并将样本分配给距离最近的聚类中心。
  3. 更新:更新聚类中心点,使用每个簇中样本的均值作为新的聚类中心。
  4. 迭代:重复步骤2和步骤3,直到聚类中心不再发生变化或达到预定迭代次数。

K-均值聚类算法的优点包括:

  1. 算法简单且易于实现。
  2. 对大规模数据集也能够有效处理。
  3. 可以用于数据预处理和聚类结果的初始猜测。

K-均值聚类算法的缺点包括:

  1. 需要预先指定簇的数量K,但在实际应用中往往难以确定合适的K值。
  2. 对初始聚类中心的选择敏感,不同的初始聚类中心可能导致不同的聚类结果。
  3. 对于不同形状、大小、密度的簇效果不佳。
  4. 对离群点敏感,离群点可能会影响聚类结果。

值得注意的是,K-均值算法是基于欧氏距离的,因此在应用之前需要对数据进行标准化处理,以避免某些特征对距离计算的影响过大。另外,为了克服K-均值算法的一些缺点,研究人员也提出了许多改进的版本,如K-均值++、K-均值++、K-均值大数据版本等。

相关推荐
rchmin18 小时前
限流算法:令牌桶与漏桶详解
算法·限流
leoufung18 小时前
LeetCode 221:Maximal Square 动态规划详解
算法·leetcode·动态规划
黑符石18 小时前
【论文研读】Madgwick 姿态滤波算法报告总结
人工智能·算法·机器学习·imu·惯性动捕·madgwick·姿态滤波
源代码•宸18 小时前
Leetcode—39. 组合总和【中等】
经验分享·算法·leetcode·golang·sort·slices
好易学·数据结构18 小时前
可视化图解算法77:零钱兑换(兑换零钱)
数据结构·算法·leetcode·动态规划·力扣·牛客网
AlenTech18 小时前
226. 翻转二叉树 - 力扣(LeetCode)
算法·leetcode·职场和发展
Tisfy18 小时前
LeetCode 1458.两个子序列的最大点积:动态规划
算法·leetcode·动态规划·题解·dp
求梦82018 小时前
【力扣hot100题】合并区间(9)
算法·leetcode·职场和发展
汽车仪器仪表相关领域18 小时前
工况模拟精准检测,合规减排赋能行业 ——NHASM-1 型稳态工况法汽车排气检测系统项目实战经验分享
数据库·算法·单元测试·汽车·压力测试·可用性测试
chilavert31819 小时前
技术演进中的开发沉思-299 计算机原理:数据结构
算法·计算机原理