K-均值聚类算法

K-均值聚类算法是一种经典的非监督学习算法,用于将数据集中的样本划分为K个不同的簇(cluster)。其目标是使得同一簇内的样本相似度最高,不同簇之间的样本相似度最低。

算法步骤如下:

  1. 初始:随机选择K个初始聚类中心点。
  2. 分配:计算每个样本到各个聚类中心的距离,并将样本分配给距离最近的聚类中心。
  3. 更新:更新聚类中心点,使用每个簇中样本的均值作为新的聚类中心。
  4. 迭代:重复步骤2和步骤3,直到聚类中心不再发生变化或达到预定迭代次数。

K-均值聚类算法的优点包括:

  1. 算法简单且易于实现。
  2. 对大规模数据集也能够有效处理。
  3. 可以用于数据预处理和聚类结果的初始猜测。

K-均值聚类算法的缺点包括:

  1. 需要预先指定簇的数量K,但在实际应用中往往难以确定合适的K值。
  2. 对初始聚类中心的选择敏感,不同的初始聚类中心可能导致不同的聚类结果。
  3. 对于不同形状、大小、密度的簇效果不佳。
  4. 对离群点敏感,离群点可能会影响聚类结果。

值得注意的是,K-均值算法是基于欧氏距离的,因此在应用之前需要对数据进行标准化处理,以避免某些特征对距离计算的影响过大。另外,为了克服K-均值算法的一些缺点,研究人员也提出了许多改进的版本,如K-均值++、K-均值++、K-均值大数据版本等。

相关推荐
二进制person2 小时前
Java SE--方法的使用
java·开发语言·算法
OneQ6662 小时前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way2 小时前
LeetCode三数之和-js题解
javascript·算法·leetcode
.30-06Springfield3 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战5 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
weixin_478689765 小时前
十大排序算法汇总
java·算法·排序算法
luofeiju6 小时前
使用LU分解求解线性方程组
线性代数·算法
SKYDROID云卓小助手6 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理
ysa0510306 小时前
数论基础知识和模板
数据结构·c++·笔记·算法
GEEK零零七7 小时前
Leetcode 1103. 分糖果 II
数学·算法·leetcode·等差数列