n阶Legendre多项式正交性的证明

前言

在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中,我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的正交性质。

正交多项式的定义

设 f n ( x ) , n ∈ N f_n(x),n\in \mathbb N fn(x),n∈N是定义在 [ a , b ] [a,b] [a,b]上的一列函数,若对于任意的自然数 m , n m,n m,n, f m ( x ) f n ( x ) f_m(x)f_n(x) fm(x)fn(x)在 [ a , b ] [a,b] [a,b]上可积,且满足:
∫ a b f m ( x ) f n ( x ) d x = { 0 , m ≠ n ∫ a b f n 2 ( x ) d x > 0 , m = n \int_{a}^{b}f_m(x)f_n(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle \int_{a}^{b} f^2_n(x)\mathrm{d}x>0, &m=n\end{cases} ∫abfm(x)fn(x)dx=⎩ ⎨ ⎧0,∫abfn2(x)dx>0,m=nm=n

则称 { f n ( x ) } \{f_n(x)\} {fn(x)}是 [ a , b ] [a,b] [a,b]上的正交函数列 。当 { f n ( x ) } \{f_n(x)\} {fn(x)}是 n n n次多项式时,则称 { f n ( x ) } \{f_n(x)\} {fn(x)}是 [ a , b ] [a,b] [a,b]上的正交多项式列

n阶Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的正交性证明

n次Legendre多项式的定义如下:
p n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n , n ∈ N p_{n}(x)=\frac{1}{2^n n!}\frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n, n\in \mathbb{N} pn(x)=2nn!1dxndn(x2−1)n,n∈N

不妨设 n ≥ m n \geq m n≥m。首先构造如下函数

I m n = m ! n ! 2 m 2 n ∫ − 1 1 p m ( x ) p n ( x ) d x = ∫ − 1 1 d m d x m ( x 2 − 1 ) m ⋅ d n d x n ( x 2 − 1 ) n d x \begin{equation} I_{mn}=m!n!2^m2^n\int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n \mathrm{d}x \end{equation} Imn=m!n!2m2n∫−11pm(x)pn(x)dx=∫−11dxmdm(x2−1)m⋅dxndn(x2−1)ndx

用分部积分法对 ( 1 ) (1) (1)式进行积分,可以得到

I m n = ∫ − 1 1 d m d x m ( x 2 − 1 ) m d ( d n − 1 d x n − 1 ( x 2 − 1 ) n ) = d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} \begin{align} I_{mn} &=\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \mathrm{d}(\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n) \nonumber \\ &=\left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |{-1}^{1} \nonumber -\int{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \nonumber \\ \end{align} \end{equation} Imn=∫−11dxmdm(x2−1)md(dxn−1dn−1(x2−1)n)=dxmdm(x2−1)m⋅dxn−1dn−1(x2−1)n −11−∫−11dxn−1dn−1(x2−1)n⋅dxm+1dm+1(x2−1)mdx

这里引用《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章里的结论:

当 k < n k<n k<n时, f k ( x ) = [ ( x 2 − 1 ) n ] ( k ) f_{k}(x)=[(x^2-1)^n]^{(k)} fk(x)=[(x2−1)n](k)的每一项都包含因式 x − 1 x-1 x−1与 x + 1 x+1 x+1

因此 d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 = 0 \displaystyle \left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1}=0 dxmdm(x2−1)m⋅dxn−1dn−1(x2−1)n −11=0。于是 ( 2 ) (2) (2)式可以写成:

I m n = − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} I_{mn}=-\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \end{equation} Imn=−∫−11dxn−1dn−1(x2−1)n⋅dxm+1dm+1(x2−1)mdx

继续用分部积分法对 ( 3 ) (3) (3)式重复上述过程,执行 n n n次后,得到

I m n = ( − 1 ) n ∫ − 1 1 d m + n d x m + n ( x 2 − 1 ) m ⋅ ( x 2 − 1 ) n d x \begin{equation} I_{mn}=(-1)^n\int_{-1}^{1} \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m \cdot (x^2-1)^n \mathrm{d}x \end{equation} Imn=(−1)n∫−11dxm+ndm+n(x2−1)m⋅(x2−1)ndx

下面分情况讨论。

  1. 若 n > m n>m n>m, d m + n d x m + n ( x 2 − 1 ) m = 0 \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =0 dxm+ndm+n(x2−1)m=0,即 I m n = 0 I_{mn}=0 Imn=0,因此有

∫ − 1 1 p m ( x ) p n ( x ) d x = 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =0 \end{equation} ∫−11pm(x)pn(x)dx=0

  1. 若 n = m n=m n=m,根据高阶导数的Leibniz公式可以得到:
    d m + n d x m + n ( x 2 − 1 ) m = ∑ i = 0 2 n C 2 n i [ ( x + 1 ) n ] ( i ) [ ( x − 1 ) n ] ( 2 n − i ) = C 2 n n [ ( x + 1 ) n ] ( n ) [ ( x − 1 ) n ] ( n ) = ( 2 n ) ! \begin{equation} \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =\displaystyle \sum_{i=0}^{2n} C_{2n}^{i}[(x+1)^n]^{(i)}[(x-1)^n]^{(2n-i)}=C_{2n}^{n}[(x+1)^n]^{(n)}[(x-1)^n]^{(n)}=(2n)! \end{equation} dxm+ndm+n(x2−1)m=i=0∑2nC2ni[(x+1)n](i)[(x−1)n](2n−i)=C2nn[(x+1)n](n)[(x−1)n](n)=(2n)!

将 ( 6 ) (6) (6)式代入 ( 4 ) (4) (4)式,不断使用分部积分法后可以得到

I n n = ( 2 n ) ! ( − 1 ) n ∫ − 1 1 ( x − 1 ) n ( x + 1 ) n d x = ( 2 n ) ! ∫ − 1 1 ( 1 − x ) n d ( ( 1 + x ) n + 1 n + 1 ) = ( 2 n ) ! n + 1 ( 1 − x ) n ( 1 + x ) n + 1 ∣ − 1 1 + ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n ( n − 1 ) ( n + 1 ) ( n + 2 ) ∫ − 1 1 ( 1 − x ) n − 2 ( 1 + x ) n + 2 d x = . . . = ( n ! ) 2 ∫ − 1 1 ( 1 + x ) 2 n d x = ( n ! ) 2 2 2 n + 1 2 n + 1 \begin{equation} \begin{align} I_{nn} &= (2n)!(-1)^n\int_{-1}^{1} (x-1)^n (x+1)^n \mathrm{d}x \nonumber \\ &=(2n)!\int_{-1}^{1}(1-x)^n \mathrm{d}\left(\dfrac{(1+x)^{n+1}} {n+1}\right)\nonumber \\ &=\left.\dfrac{(2n)!}{n+1}(1-x)^n(1+x)^{n+1}\right|{-1}^{1}+\dfrac{(2n)!n}{n+1}\int{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n(n-1)}{(n+1)(n+2)}\int_{-1}^{1}(1-x)^{n-2}(1+x)^{n+2}\mathrm{d}x \nonumber \\ &=... \nonumber \\ &=(n!)^2\int_{-1}^{1}(1+x)^{2n}\mathrm{d}x =\dfrac{(n!)^2 2^{2n+1}}{2n+1}\nonumber \\ \end{align} \end{equation} Inn=(2n)!(−1)n∫−11(x−1)n(x+1)ndx=(2n)!∫−11(1−x)nd(n+1(1+x)n+1)=n+1(2n)!(1−x)n(1+x)n+1 −11+n+1(2n)!n∫−11(1−x)n−1(1+x)n+1dx=n+1(2n)!n∫−11(1−x)n−1(1+x)n+1dx=(n+1)(n+2)(2n)!n(n−1)∫−11(1−x)n−2(1+x)n+2dx=...=(n!)2∫−11(1+x)2ndx=2n+1(n!)222n+1

将 ( 7 ) (7) (7)式代入 ( 1 ) (1) (1)式,可得

∫ − 1 1 p m ( x ) p n ( x ) d x = I n n ( n ! ) 2 2 n = 2 2 n + 1 > 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\dfrac{I_{nn}}{(n!)2^{2n}}=\dfrac{2}{2n+1}>0 \end{equation} ∫−11pm(x)pn(x)dx=(n!)22nInn=2n+12>0

结合 ( 5 ) , ( 8 ) (5),(8) (5),(8)式,我们得到了如下结论

∫ − 1 1 p m ( x ) p n ( x ) d x = { 0 , m ≠ n 2 2 n + 1 > 0 , m = n \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle\dfrac{2}{2n+1}>0, &m=n\end{cases} ∫−11pm(x)pn(x)dx=⎩ ⎨ ⎧0,2n+12>0,m=nm=n

根据定义,我们得到 n n n次Legendre多项式列 { p n ( x ) } \{p_n(x)\} {pn(x)}是 [ − 1 , 1 ] [-1,1] [−1,1]上的正交多项式列。证毕。

相关推荐
程序员大雄学编程2 天前
用Python来学微积分30-微分方程初步
开发语言·python·线性代数·数学·微积分
程序员大雄学编程5 天前
用Python来学微积分23-微分中值定理
人工智能·python·数学·微积分
程序员大雄学编程6 天前
用Python来学微积分22-费马定理
人工智能·python·数学·微积分
程序员大雄学编程7 天前
「用Python来学微积分」17. 导数与导函数
开发语言·python·数学·微积分
程序员大雄学编程10 天前
「用Python来学微积分」18. 微分
开发语言·python·数学·微积分
程序员大雄学编程11 天前
「用Python来学微积分」16. 导数问题举例
开发语言·python·数学·微积分
程序员大雄学编程13 天前
「用Python来学微积分」11. 夹逼定理与单调有界收敛定理
python·数学·微积分·1024程序员节
程序员大雄学编程17 天前
「用Python来学微积分」5. 曲线的极坐标方程
开发语言·python·微积分
程序员大雄学编程19 天前
「用Python来学微积分」2. 函数图像的变换
python·数学·微积分
Mysticbinary2 个月前
预测型体温计原理
微积分·微分法·预测式算法