【AscendC】ReduceSum中指定workLocal大小时如何计算

参考官方文档,但其中对于workLocal大小的计算只是以代码注释的方式给出,不具有直观性,现在结合两个官方例子进行推导。

首先注意到api的调用,分为高维切分模式和指定数量模式,两种模式的计算是不同的,主要在于repeattimes这个变量的大小。

高维切分的例子见上图,可以看到结果是80.

结合图1进行分析,首先数据类型为half类型,所以elementsPerBlock为16,而repeatTime的计算是通过srcDataSize / mask, 也即8320 / 128 = 65。

进行上取整得到的结果是65 + 15 / 16 = 5, 5 * 16 = 80。所以最终结果为80。

对于指定数量n的模式,见下图:

此处指定的srcDataSize是288,由图1的注释,

// 此处需要注意:对于tensor高维切分计算接口,firstMaxRepeat就是repeatTimes;对于tensor前n个数据计算接口,firstMaxRepeat为count/elementsPerRepeat,比如在half类型下firstMaxRepeat就是count/128,在float类型下为count/64,按需填入,对于count<elementsPerRepeat的场景,firstMaxRepeat就是1

可以看到 firstMaxRepeated = 288 / 128 = 1。

因此得到的结果就是(1+ 15) / 16 * 16 = 16.

相关推荐
luoganttcc29 分钟前
是凯恩斯主义主导 西方的经济决策吗
大数据·人工智能·金融·哲学
好奇龙猫34 分钟前
AI学习:SPIN -win-安装SPIN-工具过程 SPIN win 电脑安装=accoda 环境-第五篇:代码修复]
人工智能·学习
远山枫谷43 分钟前
如何通过nodean安装n8n以及可能遇到的问题
人工智能
AIGC_北苏1 小时前
EvalScope模型压力测试实战
人工智能·语言模型·模型评估·框架评估
CheungChunChiu1 小时前
AI 模型部署体系全景:从 PyTorch 到 RKNN 的嵌入式类比解析
人工智能·pytorch·python·模型
分布式存储与RustFS1 小时前
存算一体架构的先行者:RustFS在异构计算环境下的探索与实践
大数据·人工智能·物联网·云原生·对象存储·minio·rustfs
Scc_hy1 小时前
强化学习_Paper_2000_Eligibility Traces for Off-Policy Policy Evaluation
人工智能·深度学习·算法·强化学习·rl
IT小哥哥呀1 小时前
论文见解:REACT:在语言模型中协同推理和行动
前端·人工智能·react.js·语言模型
来酱何人1 小时前
低资源NLP数据处理:少样本/零样本场景下数据增强与迁移学习结合方案
人工智能·深度学习·分类·nlp·bert
ChinaRainbowSea1 小时前
11. Spring AI + ELT
java·人工智能·后端·spring·ai编程