【AscendC】ReduceSum中指定workLocal大小时如何计算

参考官方文档,但其中对于workLocal大小的计算只是以代码注释的方式给出,不具有直观性,现在结合两个官方例子进行推导。

首先注意到api的调用,分为高维切分模式和指定数量模式,两种模式的计算是不同的,主要在于repeattimes这个变量的大小。

高维切分的例子见上图,可以看到结果是80.

结合图1进行分析,首先数据类型为half类型,所以elementsPerBlock为16,而repeatTime的计算是通过srcDataSize / mask, 也即8320 / 128 = 65。

进行上取整得到的结果是65 + 15 / 16 = 5, 5 * 16 = 80。所以最终结果为80。

对于指定数量n的模式,见下图:

此处指定的srcDataSize是288,由图1的注释,

// 此处需要注意:对于tensor高维切分计算接口,firstMaxRepeat就是repeatTimes;对于tensor前n个数据计算接口,firstMaxRepeat为count/elementsPerRepeat,比如在half类型下firstMaxRepeat就是count/128,在float类型下为count/64,按需填入,对于count<elementsPerRepeat的场景,firstMaxRepeat就是1

可以看到 firstMaxRepeated = 288 / 128 = 1。

因此得到的结果就是(1+ 15) / 16 * 16 = 16.

相关推荐
枫叶丹41 分钟前
ModelEngine应用编排创新实践:通过可视化编排构建大模型应用工作流
开发语言·前端·人工智能·modelengine
轻竹办公PPT1 分钟前
AI 自动生成 2026 年工作计划 PPT,哪种更接近可交付
人工智能·python·powerpoint
亿信华辰软件9 分钟前
金融租赁行业迎监管新考:EAST 2.0制度深度解读与高效合规之道
人工智能·金融
lisw0510 分钟前
AI宠物(AI pets)概述!
人工智能·机器人·宠物
白云千载尽10 分钟前
LLaMA-Factory 入门(一):Ubuntu20 下大模型微调与部署
人工智能·算法·大模型·微调·llama
zandy101112 分钟前
指标管理的AI自治之路:衡石平台如何实现异常检测、血缘分析与智能推荐的自动化治理
运维·人工智能·自动化·指标·指标管理
Coder_Boy_18 分钟前
Spring AI 源码核心分析
java·人工智能·spring
雪花desu20 分钟前
GraphRAG
人工智能
云老大TG:@yunlaoda36024 分钟前
华为云国际站代理商MSGSMS的服务质量如何?
大数据·数据库·人工智能·华为云
Elaine33627 分钟前
基于 Qwen2.5 与 LLaMA-Factory 的 LoRA 微调实战
人工智能·lora·微调·llama·llama-factory