【AscendC】ReduceSum中指定workLocal大小时如何计算

参考官方文档,但其中对于workLocal大小的计算只是以代码注释的方式给出,不具有直观性,现在结合两个官方例子进行推导。

首先注意到api的调用,分为高维切分模式和指定数量模式,两种模式的计算是不同的,主要在于repeattimes这个变量的大小。

高维切分的例子见上图,可以看到结果是80.

结合图1进行分析,首先数据类型为half类型,所以elementsPerBlock为16,而repeatTime的计算是通过srcDataSize / mask, 也即8320 / 128 = 65。

进行上取整得到的结果是65 + 15 / 16 = 5, 5 * 16 = 80。所以最终结果为80。

对于指定数量n的模式,见下图:

此处指定的srcDataSize是288,由图1的注释,

// 此处需要注意:对于tensor高维切分计算接口,firstMaxRepeat就是repeatTimes;对于tensor前n个数据计算接口,firstMaxRepeat为count/elementsPerRepeat,比如在half类型下firstMaxRepeat就是count/128,在float类型下为count/64,按需填入,对于count<elementsPerRepeat的场景,firstMaxRepeat就是1

可以看到 firstMaxRepeated = 288 / 128 = 1。

因此得到的结果就是(1+ 15) / 16 * 16 = 16.

相关推荐
人工智能训练4 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海5 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor6 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19826 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了6 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队7 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒7 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6007 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房7 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20118 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习