【AscendC】ReduceSum中指定workLocal大小时如何计算

参考官方文档,但其中对于workLocal大小的计算只是以代码注释的方式给出,不具有直观性,现在结合两个官方例子进行推导。

首先注意到api的调用,分为高维切分模式和指定数量模式,两种模式的计算是不同的,主要在于repeattimes这个变量的大小。

高维切分的例子见上图,可以看到结果是80.

结合图1进行分析,首先数据类型为half类型,所以elementsPerBlock为16,而repeatTime的计算是通过srcDataSize / mask, 也即8320 / 128 = 65。

进行上取整得到的结果是65 + 15 / 16 = 5, 5 * 16 = 80。所以最终结果为80。

对于指定数量n的模式,见下图:

此处指定的srcDataSize是288,由图1的注释,

// 此处需要注意:对于tensor高维切分计算接口,firstMaxRepeat就是repeatTimes;对于tensor前n个数据计算接口,firstMaxRepeat为count/elementsPerRepeat,比如在half类型下firstMaxRepeat就是count/128,在float类型下为count/64,按需填入,对于count<elementsPerRepeat的场景,firstMaxRepeat就是1

可以看到 firstMaxRepeated = 288 / 128 = 1。

因此得到的结果就是(1+ 15) / 16 * 16 = 16.

相关推荐
时见先生4 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
昨夜见军贴06166 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力7 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场7 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌7 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了7 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书17 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
产品何同学8 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I8 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术8 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python