Leetcode3218. 切蛋糕的最小总开销 I

题目描述:

有一个 m x n 大小的矩形蛋糕,需要切成 1 x 1 的小块。

给你整数 mn 和两个数组:

  • horizontalCut 的大小为 m - 1 ,其中 horizontalCut[i] 表示沿着水平线 i 切蛋糕的开销。
  • verticalCut 的大小为 n - 1 ,其中 verticalCut[j] 表示沿着垂直线 j 切蛋糕的开销。

一次操作中,你可以选择任意不是 1 x 1 大小的矩形蛋糕并执行以下操作之一:

  1. 沿着水平线 i 切开蛋糕,开销为 horizontalCut[i]
  2. 沿着垂直线 j 切开蛋糕,开销为 verticalCut[j]

每次操作后,这块蛋糕都被切成两个独立的小蛋糕。

每次操作的开销都为最开始对应切割线的开销,并且不会改变。

请你返回将蛋糕全部切成 1 x 1 的蛋糕块的 最小 总开销。

代码思路:

  1. 初始化结果
    • 首先,将horizontalCutverticalCut中所有切割位置的成本相加,得到初始的结果res。这表示仅仅进行所有给定的水平切割和垂直切割的成本总和。
  2. 计算交叉切割的额外成本
    • 接下来,代码通过两层嵌套循环遍历每一个水平切割位置hc和每一个垂直切割位置vc
    • 对于每一对交叉的切割(即一个水平切割和一个垂直切割),它们会在矩形的某个位置相交。在这个相交点,选择水平切割成本hc和垂直切割成本vc中的较小值作为交叉切割的额外成本(因为交点只会被切割一次,无论两个方向的成本如何,实际发生的成本是两者中的较小值)。
    • 将这个较小值累加到res中。
  3. 返回结果
    • 最后,返回累加后的res,它代表了进行所有给定切割以及所有交叉切割所需的最小成本总和。

代码实现:

cpp 复制代码
class Solution {
public:
    int minimumCost(int m, int n, vector<int> &horizontalCut, vector<int> &verticalCut) {
        int res = std::accumulate(horizontalCut.begin(), horizontalCut.end(), 0) +
                  std::accumulate(verticalCut.begin(), verticalCut.end(), 0);
        for (const auto &hc: horizontalCut)
            for (const auto &vc: verticalCut)
                res += std::min({hc, vc});
        return res;
    }
};
相关推荐
一匹电信狗20 小时前
【LeetCode_547_990】并查集的应用——省份数量 + 等式方程的可满足性
c++·算法·leetcode·职场和发展·stl
鱼跃鹰飞21 小时前
Leetcode会员尊享100题:270.最接近的二叉树值
数据结构·算法·leetcode
Queenie_Charlie21 小时前
小陶的疑惑2
数据结构·c++·树状数组
梵刹古音1 天前
【C语言】 函数基础与定义
c语言·开发语言·算法
筵陌1 天前
算法:模拟
算法
Queenie_Charlie1 天前
小陶与杠铃片
数据结构·c++·树状数组
We་ct1 天前
LeetCode 205. 同构字符串:解题思路+代码优化全解析
前端·算法·leetcode·typescript
renhongxia11 天前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
CoderCodingNo1 天前
【GESP】C++四级/五级练习题 luogu-P1223 排队接水
开发语言·c++·算法
民乐团扒谱机1 天前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳