Leetcode3218. 切蛋糕的最小总开销 I

题目描述:

有一个 m x n 大小的矩形蛋糕,需要切成 1 x 1 的小块。

给你整数 mn 和两个数组:

  • horizontalCut 的大小为 m - 1 ,其中 horizontalCut[i] 表示沿着水平线 i 切蛋糕的开销。
  • verticalCut 的大小为 n - 1 ,其中 verticalCut[j] 表示沿着垂直线 j 切蛋糕的开销。

一次操作中,你可以选择任意不是 1 x 1 大小的矩形蛋糕并执行以下操作之一:

  1. 沿着水平线 i 切开蛋糕,开销为 horizontalCut[i]
  2. 沿着垂直线 j 切开蛋糕,开销为 verticalCut[j]

每次操作后,这块蛋糕都被切成两个独立的小蛋糕。

每次操作的开销都为最开始对应切割线的开销,并且不会改变。

请你返回将蛋糕全部切成 1 x 1 的蛋糕块的 最小 总开销。

代码思路:

  1. 初始化结果
    • 首先,将horizontalCutverticalCut中所有切割位置的成本相加,得到初始的结果res。这表示仅仅进行所有给定的水平切割和垂直切割的成本总和。
  2. 计算交叉切割的额外成本
    • 接下来,代码通过两层嵌套循环遍历每一个水平切割位置hc和每一个垂直切割位置vc
    • 对于每一对交叉的切割(即一个水平切割和一个垂直切割),它们会在矩形的某个位置相交。在这个相交点,选择水平切割成本hc和垂直切割成本vc中的较小值作为交叉切割的额外成本(因为交点只会被切割一次,无论两个方向的成本如何,实际发生的成本是两者中的较小值)。
    • 将这个较小值累加到res中。
  3. 返回结果
    • 最后,返回累加后的res,它代表了进行所有给定切割以及所有交叉切割所需的最小成本总和。

代码实现:

cpp 复制代码
class Solution {
public:
    int minimumCost(int m, int n, vector<int> &horizontalCut, vector<int> &verticalCut) {
        int res = std::accumulate(horizontalCut.begin(), horizontalCut.end(), 0) +
                  std::accumulate(verticalCut.begin(), verticalCut.end(), 0);
        for (const auto &hc: horizontalCut)
            for (const auto &vc: verticalCut)
                res += std::min({hc, vc});
        return res;
    }
};
相关推荐
Ka1Yan5 分钟前
[链表] - 代码随想录 707. 设计链表
数据结构·算法·链表
scx201310046 分钟前
20260112树状数组总结
数据结构·c++·算法·树状数组
FastMoMO11 分钟前
Qwen3-VL-2B 在 RK3576 上的部署实践:RKNN + RKLLM 全流程
算法
光算科技17 分钟前
AI重写工具导致‘文本湍流’特征|如何人工消除算法识别标记
大数据·人工智能·算法
星竹晨L18 分钟前
【C++内存安全管理】智能指针的使用和原理
开发语言·c++
宵时待雨19 分钟前
数据结构(初阶)笔记归纳3:顺序表的应用
c语言·开发语言·数据结构·笔记·算法
智者知已应修善业22 分钟前
【C语言 dfs算法 十四届蓝桥杯 D飞机降落问题】2024-4-12
c语言·c++·经验分享·笔记·算法·蓝桥杯·深度优先
罗湖老棍子23 分钟前
最优乘车(travel)(信息学奥赛一本通- P1377)
算法·图论·bfs·最短路·字符串流·单向边
副露のmagic31 分钟前
更弱智的算法学习 day36
学习·算法
玖釉-36 分钟前
[Vulkan 学习之路] 09 - 显卡的流水线工厂:图形管线概览 (Graphics Pipeline)
c++·windows·图形渲染