0基础跟德姆(dom)一起学AI 自然语言处理06-文本数据增强

回译数据增强法

  • 回译数据增强目前是文本数据增强方面效果较好的增强方法, 一般基于google、有道等翻译接口, 将文本数据翻译成另外一种语言(一般选择小语种),之后再翻译回原语言, 即可认为得到与与原语料同标签的新语料, 新语料加入到原数据集中即可认为是对原数据集数据增强.

  • 回译数据增强优势:

    • 操作简便, 获得新语料质量高.
  • 回译数据增强存在的问题:

    • 在短文本回译过程中, 新语料与原语料可能存在很高的重复率, 并不能有效增大样本的特征空间.
  • 高重复率解决办法:

    • 进行连续的多语言翻译, 如: 中文→韩文→日语→英文→中文, 根据经验, 最多只采用3次连续翻译, 更多的翻译次数将产生效率低下, 语义失真等问题.
  • 回译数据增强实现(基于有道翻译接口):

    导入必备的工具包

    import requests

    思路分析

    1 定义需要访问的有道翻译API接口--url

    2 定义需要翻译的文本:text

    3 定义data数据:from代表原始语言, to代表目标语言, i代表需要翻译的文本, doctype:文本的类型

    4 requests.post(url=url, params=data)即代表访问api接口的方法

    def dm_translate():
    url = 'http://fanyi.youdao.com/translate'
    # 第一次翻译,目标语言英文
    text1 = '这个价格非常便宜'
    data1 = {'from': 'zh-CHS', 'to': 'en', 'i': text1, 'doctype': 'json'}
    response1 = requests.post(url=url, params=data1)
    res1 = response1.json()
    # 打印第一次翻译结果
    print(res1)

    复制代码
      # 第二次翻译, 目标语言中文
      text2 = 'The price is very cheap'
      data2 = {'from': 'en', 'to': 'zh-CHS', 'i': text2, 'doctype': 'json'}
      response2 = requests.post(url=url, params=data2)
      res2 = response2.json()
      # 打印第二次翻译结果
      print(res2)

输出结果展示:

复制代码
第一次翻译结果:{'type': 'ZH_CN2EN', 'errorCode': 0, 'elapsedTime': 1, 'translateResult': [[{'src': '这个价格非常便宜', 'tgt': 'The price is very cheap'}]]}

第二次翻译结果:{'type': 'EN2ZH_CN', 'errorCode': 0, 'elapsedTime': 1, 'translateResult': [[{'src': 'The price is very cheap', 'tgt': '价格非常便宜'}]]}

语言及其对应编码:

复制代码
'AUTO': '自动检测语言'
'zh-CHS': '中文',
'en': '英文'
'ja': '日语'
'ko': '韩语'
'fr': '法语'
'de': '德语'
相关推荐
Mark_Aussie21 分钟前
ADALog 日志异常检测
人工智能
Jouham22 分钟前
教培获客破局:AI智能体如何重塑需求捕捉与转化新范式
人工智能
HyperAI超神经24 分钟前
IQuest-Coder-V1:基于代码流训练的编程逻辑增强模型;Human Face Emotions:基于多标注维度的人脸情绪识别数据集
人工智能·深度学习·学习·机器学习·ai编程
开发者每周简报28 分钟前
MCP + 氛围编辑
人工智能
啊阿狸不会拉杆42 分钟前
《机器学习》第 1 章 - 机器学习概述
人工智能·机器学习·ai·ml
52Hz11844 分钟前
力扣73.矩阵置零、54.螺旋矩阵、48.旋转图像
python·算法·leetcode·矩阵
咚咚王者1 小时前
人工智能之核心基础 机器学习 第十八章 经典实战项目
人工智能·机器学习
DuHz1 小时前
矩阵束法(Matrix Pencil)用于 FMCW 雷达干扰抑制:论文精读
人工智能·机器学习·矩阵
编程小风筝1 小时前
机器学习和稀疏建模的应用场景和优势
人工智能·机器学习
Kakaxiii1 小时前
【2025.8 npj】图检索增强的大型语言模型用于面部表型相关的罕见遗传疾病
人工智能·语言模型·自然语言处理