5个开源RAG框架对比

还在为RAG应用开发头疼吗?别急,今天给大家推荐五款完全开源免费的RAG框架,覆盖自动优化、多模态处理、本地部署、生产环境支持等多种场景,助你轻松搞定RAG开发!👇


1. AutoRAG:自动优化,省心省力

🔑 核心优势 :自动寻找最优RAG流程,告别手动调参!

特色功能 :支持用你的评估数据测试不同RAG模块,找到最适合的方案。

💼 适用场景:适合需要优化RAG系统性能的开发者。


https://github.com/Marker-Inc-Korea/AutoRAG

2. R2R:多模态数据处理,全能选手

🔑 核心优势 :本地化部署,支持多种数据格式,一站式解决!

特色功能

  • 支持文本、PDF、JSON、图片等多种文件格式
  • 结合语义搜索 + 关键词搜索
  • 自动构建知识图谱,提取实体关系
    💼 适用场景 :适合需要处理多类型数据源的综合性RAG应用。

https://github.com/SciPhi-AI/R2R


3. n8n AI 工具包:本地部署,隐私无忧

🔑 核心优势 :完全本地化部署,数据安全有保障!

技术亮点

  • 使用@ollama运行本地LLM模型
  • 采用@qdrant_engine作为本地向量数据库
    💼 适用场景 :适合注重数据隐私、需要本地化部署的团队。

https://github.com/n8n-io/self-hosted-ai-starter-kit


4. Cognita:生产环境,稳定可靠

🔑 核心优势 :专为生产环境设计,企业级应用的首选!

特色功能 :提供可定制的数据摄入、处理和检索组件,灵活又高效。

💼 适用场景 :适合企业级应用部署,需要稳定可靠的RAG框架。

https://github.com/truefoundry/cognita


5. LLMWare:轻量专业,企业必备

🔑 核心优势 :小型专业模型,轻量又高效!

特色功能

  • 提供50+针对企业任务优化的小型模型
  • 支持完整的RAG生命周期
    💼 适用场景:适合企业环境中需要专业化、轻量级解决方案的场景。

https://github.com/llmware-ai/llmwarehttps://github.com/llmware-ai/llmware

相关推荐
浮生如梦_3 分钟前
图片转视频
图像处理·人工智能·计算机视觉·音视频
安全风信子8 分钟前
03_用LLM写代码:从函数到项目的全流程
人工智能
ai智能获客_狐狐17 分钟前
智能外呼产品架构组成
人工智能·算法·自然语言处理·架构·语音识别
安全风信子17 分钟前
05_用LLM创建知识库:从文档到智能问答系统
人工智能
金井PRATHAMA21 分钟前
逻辑的回归——一阶谓词逻辑及其变体在自然语言处理深层语义分析中的作用与前瞻
人工智能·机器学习·自然语言处理·数据挖掘·回归·知识图谱
沫儿笙38 分钟前
NACHI那智焊接机器人智能气阀
人工智能·机器人
半吊子全栈工匠1 小时前
企业AI应用的数据策略
人工智能
阿豪啊1 小时前
深入浅出:一文读懂国内外主流AI提示词(Prompt)框架
人工智能
春末的南方城市2 小时前
复旦&华为提出首个空间理解和生成统一框架UniUGG,支持参考图像和任意视图变换的 3D 场景生成和空间视觉问答 (VQA) 任务。
人工智能·科技·深度学习·计算机视觉·aigc
坐吃山猪3 小时前
Python-UV多环境管理
人工智能·python·uv