5个开源RAG框架对比

还在为RAG应用开发头疼吗?别急,今天给大家推荐五款完全开源免费的RAG框架,覆盖自动优化、多模态处理、本地部署、生产环境支持等多种场景,助你轻松搞定RAG开发!👇


1. AutoRAG:自动优化,省心省力

🔑 核心优势 :自动寻找最优RAG流程,告别手动调参!

特色功能 :支持用你的评估数据测试不同RAG模块,找到最适合的方案。

💼 适用场景:适合需要优化RAG系统性能的开发者。


https://github.com/Marker-Inc-Korea/AutoRAG

2. R2R:多模态数据处理,全能选手

🔑 核心优势 :本地化部署,支持多种数据格式,一站式解决!

特色功能

  • 支持文本、PDF、JSON、图片等多种文件格式
  • 结合语义搜索 + 关键词搜索
  • 自动构建知识图谱,提取实体关系
    💼 适用场景 :适合需要处理多类型数据源的综合性RAG应用。

https://github.com/SciPhi-AI/R2R


3. n8n AI 工具包:本地部署,隐私无忧

🔑 核心优势 :完全本地化部署,数据安全有保障!

技术亮点

  • 使用@ollama运行本地LLM模型
  • 采用@qdrant_engine作为本地向量数据库
    💼 适用场景 :适合注重数据隐私、需要本地化部署的团队。

https://github.com/n8n-io/self-hosted-ai-starter-kit


4. Cognita:生产环境,稳定可靠

🔑 核心优势 :专为生产环境设计,企业级应用的首选!

特色功能 :提供可定制的数据摄入、处理和检索组件,灵活又高效。

💼 适用场景 :适合企业级应用部署,需要稳定可靠的RAG框架。

https://github.com/truefoundry/cognita


5. LLMWare:轻量专业,企业必备

🔑 核心优势 :小型专业模型,轻量又高效!

特色功能

  • 提供50+针对企业任务优化的小型模型
  • 支持完整的RAG生命周期
    💼 适用场景:适合企业环境中需要专业化、轻量级解决方案的场景。

https://github.com/llmware-ai/llmwarehttps://github.com/llmware-ai/llmware

相关推荐
长桥夜波23 分钟前
机器学习周报01
人工智能·机器学习
andyguo25 分钟前
全面解读大型语言模型测评:从认知演进到实操框架
人工智能·算法
闲人编程38 分钟前
使用MLflow跟踪和管理你的机器学习实验
开发语言·人工智能·python·机器学习·ml·codecapsule
深度学习实战训练营1 小时前
MemNet:一种用于图像恢复的持久性存储网络
网络·人工智能
鸿蒙小白龙1 小时前
OpenHarmony 6.0 低空飞行器开发实战:从AI感知检测到组网协同
人工智能·harmonyos·鸿蒙·鸿蒙系统·open harmony
TTGGGFF2 小时前
机器视觉:智能车大赛视觉组技术文档——用 YOLO3 Nano 实现目标检测并部署到 OpenART
人工智能·目标检测·计算机视觉
CodeJourney.2 小时前
Python开发可视化音乐播放器教程(附代码)
数据库·人工智能·python
强德亨上校2 小时前
神经网络详解
人工智能·深度学习·神经网络
视***间2 小时前
275TOPS算力边缘计算盒子的价值洞察与市场定位---视程空间
人工智能·边缘计算