概率论与数理统计

概率论占比更多,三分之二左右

数理统计会少一些

事件之间的概率

ab互斥,不是ab独立

古典概型吃高中基础,考的不会很多

条件概率公式,要记

公式不要全记,很多有名称的公式是通过基础公式转换而来的

目的在于解决一些问题的解决经常需要相同的一套流程

所以干脆在这个基础上直接转换出流程的公式

随机变量X的分布

一维随机变量及其分布,,这一章很重要,而且是后续学习的理论基础

有很多的离散分布类型,重点部分为二项分布和泊松分布

均匀分布和指数分布

连续这一块有正态分布,正态分布很重要,贯穿后面的数理统计

对于这个公式的考察,概率不大

正态分布使用之前要先转换为标准化变量,才方便计算

离散型函数

一般还是考连续型

单调函数y=g(x)

二维随机变量分布

联合密度函数,两个随机变量之间满足的二重积分关系

正则性,联合密度函数的区域面积为1,求出k的未知数

求出k之后,f(x,y)这个二维随机变量的函数就确认了,然后就用x+y<=4限制的区间对函数的积分范围进行限制

边缘分布,则是只观察这个二维随机变量函数的其中一个是怎么变化的

条件分布

二维联合分布、密度函数的独立性

卷积公式,z=x+y,密度函数的相加

最值的函数,即在该点的情况下,max的值为多个随机变量中最大或最小的那个F()概率

(各个随机变量互相独立,而且同概率分布函数

随机变量的数字特征

对于概率密度连续函数--期望的求解

对于方差,一维连续分布

---切比雪夫不等式,游离知识体系外(考察较少,如果要使用也一般会直接说明)

***背***常用分布的期望和方差(连续型中的各种概率分布)

告诉一个具体的分布类型,然后求期望和方差,运用上面的公式

--二项分布中的npq算连续型方差,p是成功的概率,q是失败的概率,p+q=1

<<<<<<<<<

二维分布的特征数

协方差(只在二维的随机变量情况下)

相关系数底下的两个是标准差的意思,是两个随机变量的方差的根号相乘,

相比于协方差的求法,协方差的性质更重要

方差,协方差都是可以乘法分配律使用的

<<<<<<<<<<<<<<<<<<

大数定律与中心极限定理(过于数学化,反而考察内容较少)但出题是会出题的

大数定理--记形,变量均值->期望均值(求)

中心极限定理

<<<<<<<<<<<<<<<<<6、7、8章

数理统计

(至少是三四十分的情况)

统计量的概念,,对于一个统计量,最常见的就是这个统计量的均值和方差

多个样本共同的均值和方差

三大抽样分布的出题>>给你一个奇奇怪怪的统计量,然后可以变成三大抽样分布

>>>>>>>>>>>>>>>>>>>>>>>>>.

配出常数c,使得c*统计量Y结果服从卡方分布

t分布,参与构成t分布,需要x和y两个统计量一个满足标准正态分布,一个满足卡方分布

然后这两个分布里用的数据尽量不要重合--为了可以让两个统计量有独立的信息提供

F分布---F(1,2)两个数是两个独立统计量x和y的自由度

t分布是一个标准正态一个卡方

f分布是一个卡方加另一个一个卡方

对于标准正态分布的xi,均值和方差s方,可以满足另一些式子

在其中抽样,配凑

<<<<<<<<<<<<<<<<<<<<

数理统计,第七章,参数估计

是估计,也就是说是一种数据量稀少的情况下,要用什么方法还可以得出下一个未知量的结果

包括的知识点----点估计,估计优良性标准,区间估计

矩估计

是已给的常数,不是一个新的变量

写个 ^ 是为了表示这是估计出来的量

最大似然估计

例题

优良性标准

这个例题,第一问利用了样本量估计的无偏估计量等于期望

第二问利用了有效性的方差比较,(对于相合性一般不考察)

区间估计

在第一步,统计量的选择是一个小步骤

如何选择呢

对例题的解

这里的T分布,因为标准差未知,所以使用

判断已知哪些量----选择合适的代换式t,还是卡方,还是标准正态

额外的练习---区间估计也差不多只考这种题了

<<<<<<<<<<<<<<<<

终于也是来到了最后一章,假设检验,但这章似乎只考一个式子,好像是个大题

和上一章的参数估计有着千丝万缕的联系

--

随机变量X的分布函数中含有未知参数θ

--建立假设H0,--背择假设H1

"检验是否等于10"----不等于则为背择假设

对于假设,会抽多个样本出来进行判断,

原假设正确,但是样本量计算结果在拒绝域

原假设错误,拒绝域的假设正确,但样本量计算结果在原假设的区间

第一类错误的概率更常用一些,显著性水平(but no care)

个人的

相关推荐
jackyrongvip3 天前
妙用《甄嬛传》中的选妃来记忆概率论中的乘法公式
概率论
lynn-666 天前
【深度学习与大模型基础】第8章-概率分布
人工智能·算法·机器学习·概率论
猎人everest8 天前
机器学习之概率论
人工智能·机器学习·概率论
豆芽8198 天前
二项式分布(Binomial Distribution)
人工智能·python·机器学习·numpy·概率论
zbdx不知名菜鸡11 天前
self Attention为何除以根号dk?(全新角度)
transformer·attention·概率论
优美的赫蒂11 天前
扩展卡尔曼滤波
机器学习·数学建模·矩阵·概率论
Lichenpar12 天前
AI小白的第七天:必要的数学知识(四)
人工智能·概率论·概率分布
pen-ai13 天前
离散概率分布:正态分布,二项分布,连续分布,正态分布的性质
算法·机器学习·概率论
kngines13 天前
从零构建大语言模型全栈开发指南:第一部分:数学与理论基础-1.1.2核心数学基础:线性代数、概率论与梯度优化
人工智能·线性代数·大语言模型·概率论·强化学习·rlhf
zyq~14 天前
【课堂笔记】定理:样本越多,测量的经验损失越接近真实损失
笔记·机器学习·概率论