数据挖掘——支持向量机分类器

数据挖掘------支持向量机分类器

支持向量机

根据统计学习理论,学习机器的实际风险由经验风险值置信范围值 两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化 置信范围值,因此其泛化能力较差。

Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统的学习方法。

由于SVM 的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解

SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

最小间隔面推导

注意分类的间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2,不是 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

SVM目标函数求解:对偶问题求解

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

稀疏性理论解释:

基于软间隔的C-SVM

非线性SVM与核变换


观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

常用核函数

相关推荐
搂鱼11451414 小时前
GJOI 11.10 题解
算法
爱睡觉的咋14 小时前
openGauss × AI:打造一个能识图、能讲解、还能推荐的智慧博物馆导览师
算法
用户34594741136114 小时前
Agent智能体全集系列课件与视频
人工智能
新加坡内哥谈技术14 小时前
麻省理工学院未来研发更高温超导体打开了新路径
人工智能
视觉AI14 小时前
一帧就能“训练”的目标跟踪算法:通俗理解 KCF 的训练机制
人工智能·算法·目标跟踪
MediaTea14 小时前
Python 第三方库:PyTorch(动态计算图的深度学习框架)
开发语言·人工智能·pytorch·python·深度学习
Code884814 小时前
观察Springboot AI-Function Tools 执行过程
人工智能·spring boot·后端
kyle-fang14 小时前
pytorch-张量转换
人工智能·pytorch·python
甄心爱学习15 小时前
计算机视觉11-相机模型与多视几何
人工智能·数码相机·计算机视觉
qunshankeji15 小时前
草莓病害智能识别与分类_Cascade-RCNN_HRNetV2p-W18-20e_COCO实现
人工智能·数据挖掘