数据挖掘——支持向量机分类器

数据挖掘------支持向量机分类器

支持向量机

根据统计学习理论,学习机器的实际风险由经验风险值置信范围值 两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化 置信范围值,因此其泛化能力较差。

Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统的学习方法。

由于SVM 的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解

SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

最小间隔面推导

注意分类的间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2,不是 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

SVM目标函数求解:对偶问题求解

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

稀疏性理论解释:

基于软间隔的C-SVM

非线性SVM与核变换


观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

常用核函数

相关推荐
_Li.几秒前
机器学习-贝叶斯公式
人工智能·机器学习·概率论
luoganttcc3 分钟前
详细分析一下 国富论里里面 十一章 关于白银价格的 论述
人工智能
LYFlied5 分钟前
【算法解题模板】-【回溯】----“试错式”问题解决利器
前端·数据结构·算法·leetcode·面试·职场和发展
拾忆,想起8 分钟前
设计模式:软件开发的可复用武功秘籍
开发语言·python·算法·微服务·设计模式·性能优化·服务发现
GEO AI搜索优化助手14 分钟前
生态震荡——当“摘要”成为终点,知识价值链的重塑与博弈
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
lxh011314 分钟前
最长有效括号
数据结构·算法
IT_陈寒14 分钟前
JavaScript 性能优化:5个被低估的V8引擎技巧让你的代码提速50%
前端·人工智能·后端
橙子牛奶糖18 分钟前
Science | 本周最新文献速递
算法·gwas·生物信息学·单细胞测序
哔哩哔哩技术19 分钟前
SABER: 模式切换的混合思考模型训练范式
人工智能
皮卡蛋炒饭.21 分钟前
背包问题Ⅱ与二分问题
算法