数据挖掘——支持向量机分类器

数据挖掘------支持向量机分类器

支持向量机

根据统计学习理论,学习机器的实际风险由经验风险值置信范围值 两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化 置信范围值,因此其泛化能力较差。

Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统的学习方法。

由于SVM 的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解

SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

最小间隔面推导

注意分类的间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2,不是 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

SVM目标函数求解:对偶问题求解

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

稀疏性理论解释:

基于软间隔的C-SVM

非线性SVM与核变换


观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

常用核函数

相关推荐
leiming62 分钟前
深度学习日记2025.11.20
人工智能·深度学习
vir027 分钟前
小齐的技能团队(dp)
数据结构·c++·算法·图论
速易达网络12 分钟前
tensorflow+yolo图片训练和图片识别系统
人工智能·python·tensorflow
智元视界18 分钟前
从算法到城市智能:AI在马来西亚智慧城市建设中的系统应用
人工智能·科技·智慧城市·数字化转型·产业升级
Tezign_space31 分钟前
技术方案|构建品牌KOS内容中台:三种架构模式与AI赋能实践
人工智能·架构·数字化转型·小红书·kos·内容营销·内容科技
m0_4626052235 分钟前
第N6周:中文文本分类-Pytorch实现
pytorch·分类·数据挖掘
Star在努力39 分钟前
C语言复习八(2025.11.18)
c语言·算法·排序算法
嵌入式-老费42 分钟前
自己动手写深度学习框架(pytorch训练第一个网络)
人工智能·pytorch·深度学习
南山安1 小时前
从反转字符串看透面试官的“内心戏”:你的算法思维到底怎么样?
javascript·算法·面试
小刘摸鱼中1 小时前
高频电子电路-振荡器的频率稳定度
网络·人工智能