数据挖掘——支持向量机分类器

数据挖掘------支持向量机分类器

支持向量机

根据统计学习理论,学习机器的实际风险由经验风险值置信范围值 两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化 置信范围值,因此其泛化能力较差。

Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统的学习方法。

由于SVM 的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解

SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

最小间隔面推导

注意分类的间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2,不是 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

SVM目标函数求解:对偶问题求解

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

稀疏性理论解释:

基于软间隔的C-SVM

非线性SVM与核变换


观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

常用核函数

相关推荐
youcans_5 分钟前
【YOLO 项目实战】(12)红外/可见光多模态目标检测
人工智能·yolo·目标检测·计算机视觉·多模态
深蓝学院5 分钟前
Visual CoT:解锁视觉链式思维推理的潜能
人工智能·计算机视觉·目标跟踪
AI追随者6 分钟前
超越YOLO11!DEIM:先进的实时DETR目标检测
人工智能·深度学习·算法·目标检测·计算机视觉
卧式纯绿9 分钟前
自动驾驶3D目标检测综述(六)
人工智能·算法·目标检测·计算机视觉·3d·目标跟踪·自动驾驶
Smark.22 分钟前
(leetcode算法题)382. 链表随机节点
算法·leetcode
KeyPan31 分钟前
【机器学习:一、机器学习简介】
人工智能·数码相机·算法·机器学习·计算机视觉
deardao36 分钟前
【顶刊TPAMI 2025】多头编码(MHE)之极限分类 Part 1:背景动机
人工智能·深度学习·神经网络·数据挖掘·极限标签分类
沐欣工作室_lvyiyi42 分钟前
基于单片机的家庭智能垃圾桶(论文+源码)
人工智能·stm32·单片机·嵌入式硬件·单片机毕业设计·垃圾桶
B站计算机毕业设计超人1 小时前
计算机毕业设计Python动漫推荐系统 漫画推荐系统 动漫视频推荐系统 机器学习 bilibili动漫爬虫 数据可视化 数据分析 大数据毕业设计
大数据·python·深度学习·机器学习·网络爬虫·课程设计·推荐算法
湫ccc1 小时前
《Opencv》基础操作详解(4)
人工智能·opencv·计算机视觉