数据挖掘——支持向量机分类器

数据挖掘------支持向量机分类器

支持向量机

根据统计学习理论,学习机器的实际风险由经验风险值置信范围值 两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化 置信范围值,因此其泛化能力较差。

Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统的学习方法。

由于SVM 的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解

SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

最小间隔面推导

注意分类的间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2,不是 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

SVM目标函数求解:对偶问题求解

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

稀疏性理论解释:

基于软间隔的C-SVM

非线性SVM与核变换


观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

常用核函数

相关推荐
索木木1 小时前
大模型训练CP切分(与TP、SP结合)
人工智能·深度学习·机器学习·大模型·训练·cp·切分
DevilSeagull1 小时前
C语言: 动态内存管理
人工智能·语言模型·自然语言处理
破晓之翼1 小时前
从第一性原理和工程控制论角度企业去思考AI开发避免完美主义陷阱
人工智能
njsgcs1 小时前
屏幕元素定位(Grounding) ollama两个模型
人工智能
码农杂谈00071 小时前
企业 AI 推理:告别黑箱决策,4 步构建可解释 AI 体系
大数据·人工智能
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-02-18
大数据·数据库·人工智能·经验分享·搜索引擎
追随者永远是胜利者2 小时前
(LeetCode-Hot100)62. 不同路径
java·算法·leetcode·职场和发展·go
追随者永远是胜利者2 小时前
(LeetCode-Hot100)56. 合并区间
java·算法·leetcode·职场和发展·go
wu_asia2 小时前
每日一练伍
算法
追随者永远是胜利者2 小时前
(LeetCode-Hot100)55. 跳跃游戏
java·算法·leetcode·游戏·go