数据挖掘——支持向量机分类器

数据挖掘------支持向量机分类器

支持向量机

根据统计学习理论,学习机器的实际风险由经验风险值置信范围值 两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化 置信范围值,因此其泛化能力较差。

Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统的学习方法。

由于SVM 的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解

SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

最小间隔面推导

注意分类的间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2,不是 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

SVM目标函数求解:对偶问题求解

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

稀疏性理论解释:

基于软间隔的C-SVM

非线性SVM与核变换


观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

常用核函数

相关推荐
好奇龙猫几秒前
【人工智能学习-AI入试相关题目练习-第十二次】
人工智能·学习
tzc_fly12 分钟前
IEEE TPAMI 2026 | ConsistID:多模态高保真肖像生成
人工智能
7***n7514 分钟前
2026年GEO深度评测:AI时代营销新基建的实践者与分化
大数据·人工智能
愚公搬代码28 分钟前
【愚公系列】《AI+直播营销》052-入局 Al 虚拟数字人直播(适合Al虚拟数字人直播的3种直播类型)
人工智能
TracyCoder12332 分钟前
LeetCode Hot100(13/100)——238. 除了自身以外数组的乘积
算法·leetcode
CoderCodingNo33 分钟前
【GESP】C++五级练习题 luogu-P3353 在你窗外闪耀的星星
开发语言·c++·算法
爱吃泡芙的小白白33 分钟前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
cooldream200936 分钟前
从语音到策略——ASR + 大语言模型驱动的辩论对话系统设计实践
人工智能·语言模型·具身数字人
Anastasiozzzz37 分钟前
LeetCode Hot100 215. 数组中的第K个最大元素
数据结构·算法·leetcode
让我上个超影吧38 分钟前
【力扣76】最小覆盖子串
算法·leetcode·职场和发展