数据挖掘——支持向量机分类器

数据挖掘------支持向量机分类器

支持向量机

根据统计学习理论,学习机器的实际风险由经验风险值置信范围值 两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化 置信范围值,因此其泛化能力较差。

Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统的学习方法。

由于SVM 的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解

SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

最小间隔面推导

注意分类的间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2,不是 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

SVM目标函数求解:对偶问题求解

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

稀疏性理论解释:

基于软间隔的C-SVM

非线性SVM与核变换


观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

常用核函数

相关推荐
AAD555888991 小时前
【电力设备检测】YOLO11-LQEHead绝缘子缺陷检测与分类系统实现
人工智能·分类·数据挖掘
JicasdC123asd1 小时前
农田杂草识别与分类:基于Faster R-CNN的优化模型实践与性能分析
分类·r语言·cnn
renhongxia11 小时前
学习基于数字孪生的质量预测与控制
人工智能·深度学习·学习·语言模型·自然语言处理·制造
Ulyanov1 小时前
高级可视化技术——让PyVista数据展示更专业
开发语言·前端·人工智能·python·tkinter·gui开发
源代码•宸1 小时前
Golang原理剖析(map)
经验分享·后端·算法·golang·哈希算法·散列表·map
昨夜见军贴06161 小时前
IACheck × AI审核赋能5G远程检测:实时视频传输质量
人工智能·5g
wen__xvn1 小时前
代码随想录算法训练营DAY15第六章 二叉树part03
数据结构·算法·leetcode
Sagittarius_A*1 小时前
图像滤波:手撕五大经典滤波(均值 / 高斯 / 中值 / 双边 / 导向)【计算机视觉】
图像处理·python·opencv·算法·计算机视觉·均值算法
seeksky1 小时前
Transformer 注意力机制与序列建模基础
算法
冰暮流星1 小时前
c语言如何实现字符串复制替换
c语言·c++·算法