Elasticsearch学习(1) : 简介、索引库操作、文档操作、RestAPI、RestClient操作

目录

1.elasticsearch简介

1.1.了解es

elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:在GitHub搜索代码、在电商网站搜索商品、在百度搜索答案、在打车软件搜索附近的车

ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址

elasticsearch的发展历史:

2004年Shay Banon基于Lucene开发了Compass

2010年Shay Banon 重写了Compass,取名为Elasticsearch。

为什么不是其他搜索技术?

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头。目前比较知名的搜索引擎技术排名:

1.2.倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%" 2)逐行获取数据,比如id为1的数据 3)判断数据中的title是否符合用户搜索条件 4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为、手机。

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图。虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

正向索引和倒排索引

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。

  • 而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。

恰好反过来了。那么两者方式的优缺点是什么呢?

正向索引

  • 优点:1.可以给多个字段创建索引;2.根据索引字段搜索、排序速度非常快
  • 缺点:根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:根据词条搜索、模糊搜索时,速度非常快
  • 缺点:1.只能给词条创建索引,而不是字段;2.无法根据字段做排序

1.3.es的一些概念:文档和字段;索引和映射;Mysql与ES

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息,其中的每一条数据就是一个文档。

文档数据会被序列化为json格式后存储在elasticsearch中。而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

索引和映射

索引(Index),就是相同类型的文档的集合。例如:所有用户文档,就可以组织在一起,称为用户的索引;所有商品的文档,可以组织在一起,称为商品的索引;所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射 (mapping),是索引中文档的字段约束信息,类似表的结构约束。

mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQL Elasticsearch 说明
Table Index 索引(index),就是文档的集合,类似数据库的表(table)
Row Document 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
Column Field 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
Schema Mapping Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQL DSL DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

1.4.安装es、kibana

部署单点es

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:docker network create es-net

这里我们采用elasticsearch的7.12.1版本的镜像(自行网上下载),这个镜像体积非常大,接近1G。不建议大家自己pull。

将其上传到虚拟机中,然后运行命令加载即可:docker load -i es.tar

同理还有kibana的tar包也需要这样做。

运行docker命令,部署单点es:

sh 复制代码
docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://ip地址:9200 即可看到elasticsearch的响应结果:

部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。运行docker命令,部署kibana:

bash 复制代码
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:docker logs -f kibana 查看运行日志,当查看到下面的日志,说明成功:

此时,在浏览器输入地址访问:http://ip地址:5601 即可看到结果

kibana中提供了一个DevTools界面,这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

IK分词器

es在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词。但默认的分词规则对中文处理并不友好。我们在kibana的DevTools中测试:

json 复制代码
GET /_analyze
{
  "analyzer": "standard",
  "text": "黑马程序员学习java太棒了"
}

语法说明:

  • POST:请求方式
  • /_analyze:请求路径,这里省略了http://ip地址:9200,有kibana帮我们补充
  • 请求参数,json风格:
    • analyzer:分词器类型,这里是默认的standard
    • 分词器text:要分词的内容

结果:除了英文,全部一个个划分了。就算把analyzer改成englishchinese也一样。所以处理中文分词,一般会使用IK分词器

安装IK分词器与测试

在线安装ik插件(较慢)

bash 复制代码
# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch

离线安装ik插件(推荐)

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:docker volume inspect es-plugins

下面我们需要把课前资料中的ik分词器解压缩(github有),重命名为ik

上传到es容器的插件数据卷中/var/lib/docker/volumes/es-plugins/_data

重启容器 docker restart es

查看es日志 docker logs -f es

在测试一下。IK分词器包含两种模式:

  • ik_smart:粗粒度切分
  • ik_max_word:最细切分
json 复制代码
GET /_analyze
{
  "analyzer": "ik_smart",
  "text": "黑马程序员学习java太棒了"
}

结果如下,分词成功:

测试ik_max_word,可以发现ik_max_word分出来的词更多,程序员是一个词,程序也是一个词,员也是一个词,所以都给它们分出来了,这就是ik_max_word,即最细粒度。而ik_smart只要发现了一个词就中止划分,不再递归更细粒度的词。

选择哪一种需要在存储空间和查询效率之间做出选择。

扩展与停用词词典

随着互联网的发展,"造词运动"也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:"奥力给"。所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)打开IK分词器config目录:

2)在IKAnalyzer.cfg.xml配置文件内容添加:

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

奥力给

在 stopword.dic 添加停用词

的
小杨哥

一般不作为一个词

4)重启elasticsearch

bash 复制代码
docker restart es

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载ext.dic(还有stopword.dic,配图还没加上这个词典)配置文件

5)测试效果:

json 复制代码
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小杨哥,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

部署es集群

部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

sh 复制代码
version: '2.2'
services:
  es01:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    networks:
      - elastic
  es03:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

运行docker compose打开集群:docker-compose up

2.索引库操作

索引库可以类比为数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建"库"和"表"。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性(更多详见官方手册)包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(不需要分词的精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建(倒排)索引,默认为true,设置为false则无法搜索此字段
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

下面看个例子:

json 复制代码
{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "程序员讲师",
    "email": "zy@itcast.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

在 Elasticsearch 中,index 属性并不仅限于文本字段。它表示该字段是否被编入索引,从而使该字段可以被搜索。无论是文本、数字、布尔还是日期等数据类型,都可以选择是否建立索引。
文本字段 :会先经过分词器处理,得到词条,然后建立传统意义上的倒排索引。
数字、日期、布尔等非文本字段:这些字段不需要分词,但它们仍然会被索引。Elasticsearch 对这些数据类型通常使用不同的底层数据结构(例如 BKD 树、点数据结构等),以支持高效的范围查询和精确匹配。

2.2.索引库的CRUD

这里我们先统一使用Kibana编写DSL的方式来演示,后面再学对应的RestAPI。

总结 :索引库操作有哪些?

创建索引库:PUT /索引库名

查询索引库:GET /索引库名

删除索引库:DELETE /索引库名

添加字段:PUT /索引库名/_mapping

创建索引库和映射

基本语法:

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

json 复制代码
PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

示例:

json 复制代码
PUT /heima
{
  "mappings": {
    "properties": {
      "info":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email":{
        "type": "keyword",
        "index": "falsae"
      },
      "name":{
      	"type": "object",
        "properties": {
          "firstName": {
            "type": "keyword"
          },
          "lastName": {
          	"type": "keyword"
          }
        }
      },
      // ... 略
    }
  }
}

查询、删除和修改索引库(映射)

查询索引库语法:

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

删除索引库语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

json 复制代码
GET /索引库名
DELETE /索引库名

示例:

修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明:

json 复制代码
PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

示例:

3.文档操作

总结 :文档操作有哪些?

创建文档:POST /{索引库名}/_doc/文档id { json文档 }

查询文档:GET /{索引库名}/_doc/文档id

删除文档:DELETE /{索引库名}/_doc/文档id

修改文档:

全量修改:PUT /{索引库名}/_doc/文档id { json文档 }

增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

3.1.新增、查询、删除(某条)文档

新增文档 语法:

json 复制代码
POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

POST /索引库名/_doc/文档id是固定写法,不指定文档id的话es会随机生成一个,所以别忘记加文档id

示例:

json 复制代码
POST /heima/_doc/1
{
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

查询文档 根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

json 复制代码
GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

json 复制代码
GET /heima/_doc/1

这里查询结果中:

index表示该文档所在的索引库

id即文档id

verson表示该文档的版本号,每做一次修改+1,删除该文档,再插入一次,这个文档id的verson就变成3了

source存储每个文档的完整 JSON 数据,反映文档的最新状态

删除文档 删除使用DELETE请求,同样,需要根据id进行删除:

语法:

json 复制代码
DELETE /{索引库名}/_doc/id值

示例:

json 复制代码
# 根据id删除数据
DELETE /heima/_doc/1

3.2.修改(某条)文档:全量、增量修改

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

全量修改 全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了

语法:

json 复制代码
PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

示例:

json 复制代码
PUT /heima/_doc/1
{
    "info": "黑马程序员高级Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

增量修改 增量修改是只修改指定id匹配的文档中的部分字段。

语法:

json 复制代码
POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

json 复制代码
POST /heima/_update/1
{
  "doc": {
    "email": "ZhaoYun@itcast.cn"
  }
}

4.RestAPI:RestClient操作索引库

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client :早期
  • Java High Level Rest Client : 对Low进一步的封装,使用起来更加方便快捷

我们学习Java HighLevel Rest Client客户端API。后面学完go了再补上go的api。

总结 : JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它是无参)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

4.1.导入Demo

首先导入课前资料提供的mysql数据库数据:

sql 复制代码
CREATE TABLE `tb_hotel` (
  `id` bigint(20) NOT NULL COMMENT '酒店id',
  `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',
  `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',
  `price` int(10) NOT NULL COMMENT '酒店价格;例:329',
  `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',
  `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',
  `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',
  `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',
  `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',
  `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',
  `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',
  `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

INSERT INTO `tb_hotel` VALUES (36934, '7天连锁酒店(上海宝山路地铁站店)', '静安交通路40号', 336, 37, '7天酒店', '上海', '二钻', '四川北路商业区', '31.251433', '121.47522', 'https://m.tuniucdn.com/fb2/t1/G1/M00/3E/40/Cii9EVkyLrKIXo1vAAHgrxo_pUcAALcKQLD688AAeDH564_w200_h200_c1_t0.jpg');
INSERT INTO `tb_hotel` VALUES (38609, '速8酒店(上海赤峰路店)', '广灵二路126号', 249, 35, '速8', '上海', '二钻', '四川北路商业区', '31.282444', '121.479385', 'https://m.tuniucdn.com/fb2/t1/G2/M00/DF/96/Cii-TFkx0ImIQZeiAAITil0LM7cAALCYwKXHQ4AAhOi377_w200_h200_c1_t0.jpg');
...

然后导入课前资料提供的项目:

mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用ik_max_word

综上,来看下酒店数据的es索引库结构:

json 复制代码
PUT /hotel
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword",
        "copy_to": "all"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

几个特殊字段说明:

  • id字段,虽然mysql里是bigint,这里没用long,而是keyword,因为观察之前的文档查询结果可知,id的返回类型是字符串
  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索。比如用户想通过名称、品牌和城市一起搜,那么我们将它们全部拷贝到一个字段就行了(当然也需要分词),实现在一个字段里搜到多个字段的内容。并且es还针对这种组合做了优化,并不是真的将内容拷贝到一起去了,而只是基于它创建了倒排索引,所以查的时候其实看不到这个字段,好像它不存在一样,但搜却能根据它搜,就很舒服。

地理坐标说明:

copy_to说明:

初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。分为三步:

1)引入es的RestHighLevelClient依赖:

xml 复制代码
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

xml 复制代码
<properties>
    <java.version>1.8</java.version>
    <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3)初始化RestHighLevelClient:

java 复制代码
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://ip地址:9200")
));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach (Junit注解)方法中:

java 复制代码
package cn.itcast.hotel;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import java.io.IOException;

public class HotelIndexTest {
    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.2.创建索引库

创建索引库的API如下:

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。RequestOptions是请求的一些参数,一般是控制请求头信息,大多数情况下不用去控制,写默认值即可

完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

java 复制代码
package cn.itcast.hotel.constants;

public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

java 复制代码
@Test
void createHotelIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求的参数:DSL语句
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

运行之后能kibana在查到索引库:

删除索引库

删除索引库的DSL语句非常简单:

json 复制代码
DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

java 复制代码
@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

json 复制代码
GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法
java 复制代码
@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

5.RestClient操作(某条)文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的酒店数据在Mysql,需要利用IHotelService去查询,所以注入这个接口
java 复制代码
package cn.itcast.hotel;

import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.service.IHotelService;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.io.IOException;
import java.util.List;

@SpringBootTest
public class HotelDocumentTest {
    @Autowired
    private IHotelService hotelService;

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

总结 :文档操作的基本步骤:

1.初始化RestHighLevelClient

2.创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk

3.准备参数(Index、Update、Bulk时需要)

4.发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk

5.解析结果(Get时需要)

5.1.新增文档

我们要将Mysql的酒店数据查询出来,写入elasticsearch中。我们要将数据库的酒店数据查询出来,写入elasticsearch中。

java 复制代码
@Data
@TableName("tb_hotel") //  MyBatis-Plus注解
public class Hotel {
    @TableId(type = IdType.INPUT)
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String longitude;
    private String latitude;
    private String pic;
}

与我们的索引库结构存在差异:longitude和latitude需要合并为location。因此,我们需要定义一个新的类型,与索引库结构吻合:

java 复制代码
package cn.itcast.hotel.pojo;

import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}

新增文档的DSL语句与对应的java代码

json 复制代码
POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求
    变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
  • hotel对象需要转为HotelDoc对象
  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel
  • 2)将Hotel封装为HotelDoc
  • 3)将HotelDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

java 复制代码
@Test
void testAddDocument() throws IOException {
    // 1.根据id查询酒店数据
    Hotel hotel = hotelService.getById(61083L);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将HotelDoc转json
    String json = JSON.toJSONString(hotelDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 2.准备Json文档
    request.source(json, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

5.2.查询文档

查询的DSL语句如下:

json 复制代码
GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化

完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

java 复制代码
@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61082");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();

    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

5.3.删除文档

删除的DSL为是这样的:

json 复制代码
DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,Java代码依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

java 复制代码
@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

5.4.修改文档:全量、增量修改

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。代码示例如图:

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

java 复制代码
@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
        "price", "952",
        "starName", "四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

5.5.批量导入文档(组合请求)

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。步骤如下:

  • 利用mybatis-plus查询酒店数据
  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。其中提供了一个add方法,用来添加其他请求:

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法
    我们在导入酒店数据时,将上述代码改造成for循环处理即可。

完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

java 复制代码
@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();

    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}
相关推荐
mjr11 分钟前
设计模式-Java
java·设计模式
零星_AagT15 分钟前
Apache-CC6链审计笔记
java·笔记·apache·代码审计
程序员张326 分钟前
使用IDEA提交SpringBoot项目到Gitee上
java·gitee·intellij-idea
sunnyday042640 分钟前
MyBatis XML映射文件中的批量插入和更新
xml·java·mysql·mybatis
Hello.Reader1 小时前
深入理解 Rust 的 `Rc<T>`:实现多所有权的智能指针
开发语言·后端·rust
程序员阿鹏1 小时前
jdbc批量插入数据到MySQL
java·开发语言·数据库·mysql·intellij-idea
yoona10201 小时前
Rust编程语言入门教程(八)所有权 Stack vs Heap
开发语言·后端·rust·区块链·学习方法
莲动渔舟1 小时前
国产编辑器EverEdit - 在编辑器中对文本进行排序
java·开发语言·编辑器
陈无左耳、1 小时前
HarmonyOS学习第4天: DevEco Studio初体验
学习·华为·harmonyos
挣扎与觉醒中的技术人1 小时前
网络安全入门持续学习与进阶路径(一)
网络·c++·学习·程序人生·安全·web安全