【机器学习】决策树

什么是决策树?

决策树是一种树形结构的机器学习模型 ,用于分类或回归问题。它通过一系列的特征条件划分数据,逐步缩小问题的范围,最终做出预测或决策

决策树算法属于监督学习方法。

决策树归纳的基本算法是贪心算法

自顶向下来构建决策树。

决策树模型

  • 根节点:包含全部数据,是决策树的起点。
  • 内部节点:每个节点对应一个特征,用来划分数据

(根据判断条件,数据被划分到不同的分支)

  • 叶节点:表示分类结果或预测值

基本流程

通过递归分裂数据,构建一棵树,使每次划分后的子集尽量"纯"。

核心步骤

  1. 选择最优特征(划分标准)

    • 每次选一个"最优特征",将数据分成几类,尽量让每一类的数据都"纯"(尽量属于同一类别)。

    • 最优特征的选择通过 信息增益基尼指数 计算。

  2. 递归分裂

    • 对每个分支的数据子集,重复选择特征、划分数据的过程。

    • 直到满足停止条件:叶子节点达到一定纯度,或者没有特征可用。

  3. 停止分裂

    • 数据完全被划分好,或达到最大深度、最小样本限制等条件。

特征选择的指标

信息增益

信息增益衡量一个特征对数据划分的效果。特征越好,划分后数据越纯,信息增益越大。

信息熵(Entropy):表示数据的混乱程度

增益率

基尼指数

基尼指数衡量数据的不纯度

基尼指数越小,数据越纯。

划分选择vs.剪枝

  • 信息增益(用于 ID3 算法):

    • 计算节点划分前后的熵变化。【熵是对数据混乱程度的度量。熵越低,数据越纯】
    • 信息增益越大,特征越好。【信息增益表示在某特征下划分数据后,减少的程度】
  • 增益率(用于 C4.5 算法):

    • 信息增益的改进形式,考虑特征的"取值数目"对信息增益的影响,避免偏好多值特征。

【固有值度量了特征取值的分布情况】增益率通过归一化,降低了多值特征的影响。

  • 基尼指数(用于 CART 算法):

    • 衡量节点划分后的数据不纯度。【基尼指数衡量数据不纯度。基尼指数越小,数据越纯】
    • 基尼指数越小,数据越纯。

防止过拟合的方法

剪枝过程中需评估剪枝前后决策树的优劣

剪枝的好处

  • 减少过拟合,提升模型的泛化性能。
  • 简化树的结构,使其更易解释。

决策树的三种基本类型

ID3算法

V ID3算法最早是由罗斯昆(J. Ross Quinlan)于1975年提出的一种决策树构建

算法,算法的核心是"信息熵",期望信息越小,信息熵越大,样本纯度越低。

V ID3算法是以信息论为基础,以信息增益为衡量标准,从而实现对数据的归纳

分类。

V ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测

试属性。

C4.5算法

  • 预剪枝(Pre-Pruning):

    • 在构建决策树时提前停止划分。

    • 条件:

      • 当前节点的样本数少于设定阈值。

      • 划分后信息增益低于阈值。

      • 树的深度达到限制。

    • 优点:简单高效,防止生成过于复杂的树。

    • 缺点:可能过早停止,导致模型欠拟合。

  • 后剪枝(Post-Pruning):

    • 先生成一棵完整的决策树,然后从叶子节点向上剪枝。

    • 剪枝后验证模型性能,如果剪枝能提升性能则保留剪枝。

    • 方法

      • 错误率剪枝:计算剪枝前后对验证集的错误率,错误率下降则剪枝。

      • 代价复杂度剪枝:通过引入一个正则化参数,平衡树的复杂度和误差。

    • 优点:更灵活,能保留有用的复杂结构。

    • 缺点:计算复杂度较高。

CART算法

相关推荐
云茧2 分钟前
机器学习中的Hello World:线性回归(一)
人工智能·机器学习·线性回归
他们叫我技术总监19 分钟前
从开发者视角深度评测:ModelEngine 与 AI 开发平台的技术博弈
java·人工智能·dubbo·智能体·modelengine
minhuan20 分钟前
构建AI智能体:八十三、当AI开始“失忆“:深入理解和预防模型衰老与数据漂移
人工智能·模型衰老·数据偏移·psi群体稳定性指标·ks统计量检验
AI浩22 分钟前
深入级联不稳定性:从 Lipschitz 连续性视角探讨图像恢复与目标检测的协同作用
人工智能·目标检测·php
笨鸟笃行22 分钟前
人工智能备考——大体题型讲解+1.1.1-1.1.5固定搭配总结
人工智能
大千AI助手23 分钟前
差分隐私随机梯度下降(DP-SGD)详解
人工智能·神经网络·差分隐私·sgd·大千ai助手·dp-sgd·差分隐私随机梯度下降
十三画者31 分钟前
【文献分享】DARKIN:基于蛋白质语言模型的零样本磷酸化位点与暗激酶关联基准测试
人工智能·语言模型·自然语言处理
执笔论英雄42 分钟前
【大模型训练】zero 学习及deepseed实战
人工智能·深度学习·学习
大千AI助手1 小时前
分布式奇异值分解(SVD)详解
人工智能·分布式·spark·奇异值分解·svd·矩阵分解·分布式svd
AgeClub1 小时前
当“钢铁护工”进入家庭,Figure 03如何重建老年居家生活?
大数据·人工智能