【深度学习】通俗理解偏差(Bias)与方差(Variance)

在统计学习中,我们通常使用方差与偏差来衡量一个模型

1. 方差与偏差的概念

偏差(Bais): 预测值和真实值之间的误差
方差(Variance): 预测值之间的离散程度

低偏差低方差、高偏差低方差:

图中每个点表示同一个模型每次采样出不同样本训练出来的结果,我们期望的是低偏差低方差

低偏差高方差、高偏差高方差:

2. 模型泛化误差

假设我们有样本数据 D = { ( x 1 , y 1 ) , . . . , ( x n , y n ) } D=\{(x_1,y_1),...,(x_n,y_n)\} D={(x1,y1),...,(xn,yn)} ,其中真实值 y = f ( x ) + ϵ y = f(x) + \epsilon y=f(x)+ϵ

在使用模型算法评价时,通常使用预测值 y ^ \hat y y^ 和真实值 y y y 的距离,最常用的函数就是距离的平方,均方误差如下公式:

如下图所示(横轴表示模型复杂度,纵轴表示误差)我们希望在中间位置找到一个合适的模型复杂度,使得泛化误差尽可能的小。模型过于简单会导致欠拟合,模型过于复杂会导致过拟合。

泛化误差 = 偏差 + 方差 + 数据噪声 泛化误差 = 偏差 + 方差 + 数据噪声 泛化误差=偏差+方差+数据噪声

  • 如果模型选择过于简单,会有很多特征学习不到,此时预测值与真实的误差就会很大,即偏差很大
  • 随着模型的复杂度提升,模型学到特征也会越多,此时偏差会逐渐降低
  • 当模型变得更复杂,模型此时可能会学习到一些数据噪声,此时方差变大

3. 降低方差、偏差、数据噪音

减少偏差:

  • 使用较为复杂模型
  • 集成学习算法 Boosting、Stacking

减少方差:

  • 使用一个较为简单的模型
  • 使用L1、L2等正则化技术
  • 集成学习算法 Bagging、Stacking

减少数据噪音:

  • 来自于数据采集误差,需要更精确的数据采集

本文参考:

https://blog.csdn.net/weixin_42327752/article/details/121428875

相关推荐
金井PRATHAMA16 分钟前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱
J_Xiong011721 分钟前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
sonrisa_35 分钟前
collections模块
python
老兵发新帖36 分钟前
LlamaFactory能做哪些?
人工智能
2202_7567496937 分钟前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
折翼的恶魔39 分钟前
数据分析:排序
python·数据分析·pandas
人有一心43 分钟前
深度学习中显性特征组合的网络结构crossNet
人工智能·深度学习
机器之心1 小时前
用光学生成图像,几乎0耗电,浙大校友一作研究登Nature
人工智能·openai
天雪浪子1 小时前
Python入门教程之赋值运算符
开发语言·python