【深度学习】通俗理解偏差(Bias)与方差(Variance)

在统计学习中,我们通常使用方差与偏差来衡量一个模型

1. 方差与偏差的概念

偏差(Bais): 预测值和真实值之间的误差
方差(Variance): 预测值之间的离散程度

低偏差低方差、高偏差低方差:

图中每个点表示同一个模型每次采样出不同样本训练出来的结果,我们期望的是低偏差低方差

低偏差高方差、高偏差高方差:

2. 模型泛化误差

假设我们有样本数据 D = { ( x 1 , y 1 ) , . . . , ( x n , y n ) } D=\{(x_1,y_1),...,(x_n,y_n)\} D={(x1,y1),...,(xn,yn)} ,其中真实值 y = f ( x ) + ϵ y = f(x) + \epsilon y=f(x)+ϵ

在使用模型算法评价时,通常使用预测值 y ^ \hat y y^ 和真实值 y y y 的距离,最常用的函数就是距离的平方,均方误差如下公式:

如下图所示(横轴表示模型复杂度,纵轴表示误差)我们希望在中间位置找到一个合适的模型复杂度,使得泛化误差尽可能的小。模型过于简单会导致欠拟合,模型过于复杂会导致过拟合。

泛化误差 = 偏差 + 方差 + 数据噪声 泛化误差 = 偏差 + 方差 + 数据噪声 泛化误差=偏差+方差+数据噪声

  • 如果模型选择过于简单,会有很多特征学习不到,此时预测值与真实的误差就会很大,即偏差很大
  • 随着模型的复杂度提升,模型学到特征也会越多,此时偏差会逐渐降低
  • 当模型变得更复杂,模型此时可能会学习到一些数据噪声,此时方差变大

3. 降低方差、偏差、数据噪音

减少偏差:

  • 使用较为复杂模型
  • 集成学习算法 Boosting、Stacking

减少方差:

  • 使用一个较为简单的模型
  • 使用L1、L2等正则化技术
  • 集成学习算法 Bagging、Stacking

减少数据噪音:

  • 来自于数据采集误差,需要更精确的数据采集

本文参考:

https://blog.csdn.net/weixin_42327752/article/details/121428875

相关推荐
0思必得01 小时前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
-dzk-1 小时前
【代码随想录】LC 59.螺旋矩阵 II
c++·线性代数·算法·矩阵·模拟
水如烟1 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
韩立学长1 小时前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
大山同学1 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
qq_192779871 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
风筝在晴天搁浅1 小时前
hot100 78.子集
java·算法
Jasmine_llq1 小时前
《P4587 [FJOI2016] 神秘数》
算法·倍增思想·稀疏表(st 表)·前缀和数组(解决静态区间和查询·st表核心实现高效预处理和查询·预处理优化(提前计算所需信息·快速io提升大规模数据读写效率
薛定谔的猫19821 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
超级大只老咪1 小时前
快速进制转换
笔记·算法