【深度学习】通俗理解偏差(Bias)与方差(Variance)

在统计学习中,我们通常使用方差与偏差来衡量一个模型

1. 方差与偏差的概念

偏差(Bais): 预测值和真实值之间的误差
方差(Variance): 预测值之间的离散程度

低偏差低方差、高偏差低方差:

图中每个点表示同一个模型每次采样出不同样本训练出来的结果,我们期望的是低偏差低方差

低偏差高方差、高偏差高方差:

2. 模型泛化误差

假设我们有样本数据 D = { ( x 1 , y 1 ) , . . . , ( x n , y n ) } D=\{(x_1,y_1),...,(x_n,y_n)\} D={(x1,y1),...,(xn,yn)} ,其中真实值 y = f ( x ) + ϵ y = f(x) + \epsilon y=f(x)+ϵ

在使用模型算法评价时,通常使用预测值 y ^ \hat y y^ 和真实值 y y y 的距离,最常用的函数就是距离的平方,均方误差如下公式:

如下图所示(横轴表示模型复杂度,纵轴表示误差)我们希望在中间位置找到一个合适的模型复杂度,使得泛化误差尽可能的小。模型过于简单会导致欠拟合,模型过于复杂会导致过拟合。

泛化误差 = 偏差 + 方差 + 数据噪声 泛化误差 = 偏差 + 方差 + 数据噪声 泛化误差=偏差+方差+数据噪声

  • 如果模型选择过于简单,会有很多特征学习不到,此时预测值与真实的误差就会很大,即偏差很大
  • 随着模型的复杂度提升,模型学到特征也会越多,此时偏差会逐渐降低
  • 当模型变得更复杂,模型此时可能会学习到一些数据噪声,此时方差变大

3. 降低方差、偏差、数据噪音

减少偏差:

  • 使用较为复杂模型
  • 集成学习算法 Boosting、Stacking

减少方差:

  • 使用一个较为简单的模型
  • 使用L1、L2等正则化技术
  • 集成学习算法 Bagging、Stacking

减少数据噪音:

  • 来自于数据采集误差,需要更精确的数据采集

本文参考:

https://blog.csdn.net/weixin_42327752/article/details/121428875

相关推荐
百家方案几秒前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信8 分钟前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
Hgfdsaqwr1 小时前
Django全栈开发入门:构建一个博客系统
jvm·数据库·python
TracyCoder1231 小时前
LeetCode Hot100(15/100)——54. 螺旋矩阵
算法·leetcode·矩阵
开发者小天1 小时前
python中For Loop的用法
java·服务器·python
老百姓懂点AI2 小时前
[RAG实战] 向量数据库选型与优化:智能体来了(西南总部)AI agent指挥官的长短期记忆架构设计
python
小韩博2 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
u0109272712 小时前
C++中的策略模式变体
开发语言·c++·算法
2501_941837262 小时前
停车场车辆检测与识别系统-YOLOv26算法改进与应用分析
算法·yolo
沃达德软件2 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测