【深度学习】通俗理解偏差(Bias)与方差(Variance)

在统计学习中,我们通常使用方差与偏差来衡量一个模型

1. 方差与偏差的概念

偏差(Bais): 预测值和真实值之间的误差
方差(Variance): 预测值之间的离散程度

低偏差低方差、高偏差低方差:

图中每个点表示同一个模型每次采样出不同样本训练出来的结果,我们期望的是低偏差低方差

低偏差高方差、高偏差高方差:

2. 模型泛化误差

假设我们有样本数据 D = { ( x 1 , y 1 ) , . . . , ( x n , y n ) } D=\{(x_1,y_1),...,(x_n,y_n)\} D={(x1,y1),...,(xn,yn)} ,其中真实值 y = f ( x ) + ϵ y = f(x) + \epsilon y=f(x)+ϵ

在使用模型算法评价时,通常使用预测值 y ^ \hat y y^ 和真实值 y y y 的距离,最常用的函数就是距离的平方,均方误差如下公式:

如下图所示(横轴表示模型复杂度,纵轴表示误差)我们希望在中间位置找到一个合适的模型复杂度,使得泛化误差尽可能的小。模型过于简单会导致欠拟合,模型过于复杂会导致过拟合。

泛化误差 = 偏差 + 方差 + 数据噪声 泛化误差 = 偏差 + 方差 + 数据噪声 泛化误差=偏差+方差+数据噪声

  • 如果模型选择过于简单,会有很多特征学习不到,此时预测值与真实的误差就会很大,即偏差很大
  • 随着模型的复杂度提升,模型学到特征也会越多,此时偏差会逐渐降低
  • 当模型变得更复杂,模型此时可能会学习到一些数据噪声,此时方差变大

3. 降低方差、偏差、数据噪音

减少偏差:

  • 使用较为复杂模型
  • 集成学习算法 Boosting、Stacking

减少方差:

  • 使用一个较为简单的模型
  • 使用L1、L2等正则化技术
  • 集成学习算法 Bagging、Stacking

减少数据噪音:

  • 来自于数据采集误差,需要更精确的数据采集

本文参考:

https://blog.csdn.net/weixin_42327752/article/details/121428875

相关推荐
极客小云几秒前
【YOLO26教育版目标检测项目详解 - 从零开始掌握YOLO核心原理】
人工智能·yolo·目标检测
ar01234 分钟前
可视化AR巡检:工业智能化发展的新引擎
人工智能·ar
星火开发设计6 分钟前
C++ 输入输出流:cin 与 cout 的基础用法
java·开发语言·c++·学习·算法·编程·知识
沫儿笙6 分钟前
库卡机器人厚板焊接节气设备
网络·人工智能·机器人
2501_933329557 分钟前
Infoseek数字公关AI中台:基于深度学习的全链路智能舆情处置系统架构解析与实战应用
人工智能·深度学习·系统架构
机器学习之心9 分钟前
卷积神经网络(CNN) 与SE(Squeeze-and-Excitation)注意力机制锂电池剩余寿命预测,MATLAB代码
人工智能·matlab·cnn·锂电池剩余寿命预测
tiger11915 分钟前
FPGA 在大模型推理中的应用
人工智能·llm·fpga·大模型推理
AI_567816 分钟前
用Everything+Total Commander管理电脑文件
人工智能·学习
We་ct17 分钟前
LeetCode 289. 生命游戏:题解+优化,从基础到原地最优
前端·算法·leetcode·矩阵·typescript
跨境卫士情报站17 分钟前
TikTok跨境电商第二增长曲线:从“跑量”到“跑利润”的精细化运营
大数据·人工智能·产品运营·跨境电商·tiktok·营销策略