Win10微调大语言模型ChatGLM2-6B

在《Win10本地部署大语言模型ChatGLM2-6B-CSDN博客》基础上进行,官方文档在这里,参考了这篇文章

首先确保ChatGLM2-6B下的有ptuning

AdvertiseGen下载地址1地址2,文件中数据留几行

模型文件下载地址 (注意:ChatGLM2-6B对话用到的的模型文件不能简单的用到这里,bin文件可以复用,但其他文件一定要重新下载,否则要报一些错)

anaconda prompt中运行,进行虚拟环境

复制代码
cd /d D:\openai.wiki\ChatGLM2-6B
conda activate D:\openai.wiki\ChatGLM2-6B\ENV

运行微调除 ChatGLM2-6B 的依赖之外,还需要安装以下依赖

复制代码
pip install rouge_chinese nltk jieba datasets

先了解一下train.sh(仅在Linux中使用)里面各行的意义

复制代码
PRE_SEQ_LEN=128 #  soft prompt 长度
LR=2e-2     # 训练学习率
NUM_GPUS=2  # GPU卡的数量

torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
    --do_train \   # 执行训练功能,还可以执行评估功能
    --train_file AdvertiseGen/train.json \   # 训练文件目录
    --validation_file AdvertiseGen/fval.json \   # 验证文件目录
    --prompt_column content \       # 训练集中prompt提示名称,对应训练文件,测试文件的"content"
    --response_column summary \      # 训练集中答案名称,对应训练文件,测试文件的"summary"
    --overwrite_cache \              # 缓存,重复训练一次的时候可删除
    --model_name_or_path THUDM/chatglm-6b \  # 加载模型文件目录,也可修改为本地模型的路径
    --output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \    # 保存训练模型文件目录
    --overwrite_output_dir \     # 覆盖训练文件目录
    --max_source_length 64 \     # 最大输入文本的长度
    --max_target_length 128 \
    --per_device_train_batch_size 1 \    # batch_size 训练批次根据显存调节
    --per_device_eval_batch_size 1 \     # 验证批次
    --gradient_accumulation_steps 16 \   # 梯度累加的步数
    --predict_with_generate \
    --max_steps 3000 \    # 最大训练模型的步数
    --logging_steps 10 \  # 多少步打印日志一次
    --save_steps 1000 \    # 多少步保存模型一次
    --learning_rate $LR \  # 学习率
    --pre_seq_len $PRE_SEQ_LEN \
    --quantization_bit 4   # 量化,也可修改为int8

Windows下用以下的train.bat

因我的电脑显存只有8G,故将per_device_train_batch_size改为8

去掉--quantization_bit 4

复制代码
set PRE_SEQ_LEN=128
set LR=1e-4

python main.py ^
    --do_train ^
    --train_file AdvertiseGen/train.json ^
    --validation_file AdvertiseGen/dev.json ^
    --preprocessing_num_workers 10 ^
    --prompt_column content ^
    --response_column summary ^
    --overwrite_cache ^
    --model_name_or_path D:\\openai.wiki\\ChatGLM2-6B\\ptuning\\THUDM\\chatglm2-6b ^
    --output_dir D:/openai.wiki/ChatGLM2-6B/ptuning/output ^
    --overwrite_output_dir ^
    --max_source_length 64 ^
    --max_target_length 128 ^
    --per_device_train_batch_size 8 ^# batch_size 训练批次根据显存调节
    --per_device_eval_batch_size 1 ^
    --gradient_accumulation_steps 16 ^
    --predict_with_generate ^
    --max_steps 3000 ^
    --logging_steps 10 ^
    --save_steps 1000 ^
    --learning_rate %LR% ^
    --pre_seq_len %PRE_SEQ_LEN% 

进入ptuning文件夹

复制代码
cd ptuning

运行train.bat,即可开始训练(有问题的话继续往后看)

复制代码
train.bat

可能遇到的几个问题

  • 问题一

TypeError: JsonConfig.init() got an unexpected keyword argument 'use_auth_token'

解决方式

复制代码
pip uninstall datasets
pip install datasets==2.21.0
  • 问题二

name 'round_up' is not defined

解决方式

将train.bat中的--quantization_bit 4删除

或者pip install cpm_kernels

  • 问题三

AttributeError: 'ChatGLMModel' object has no attribute 'prefix_encoder'

解决方式

https://huggingface.co/THUDM/chatglm2-6b/tree/main

下载除bin文件以外的最新文件

相关推荐
杨小扩5 小时前
第4章:实战项目一 打造你的第一个AI知识库问答机器人 (RAG)
人工智能·机器人
whaosoft-1435 小时前
51c~目标检测~合集4
人工智能
雪兽软件5 小时前
2025 年网络安全与人工智能发展趋势
人工智能·安全·web安全
元宇宙时间6 小时前
全球发展币GDEV:从中国出发,走向全球的数字发展合作蓝图
大数据·人工智能·去中心化·区块链
小黄人20256 小时前
自动驾驶安全技术的演进与NVIDIA的创新实践
人工智能·安全·自动驾驶
ZStack开发者社区7 小时前
首批 | 云轴科技ZStack加入施耐德电气技术本地化创新生态
人工智能·科技·云计算
X Y O8 小时前
神经网络初步学习3——数据与损失
人工智能·神经网络·学习
唯创知音8 小时前
玩具语音方案选型决策OTP vs Flash 的成本功耗与灵活性
人工智能·语音识别
Jamence8 小时前
多模态大语言模型arxiv论文略读(151)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
tongxianchao8 小时前
LaCo: Large Language Model Pruning via Layer Collapse
人工智能·语言模型·剪枝