Win10微调大语言模型ChatGLM2-6B

在《Win10本地部署大语言模型ChatGLM2-6B-CSDN博客》基础上进行,官方文档在这里,参考了这篇文章

首先确保ChatGLM2-6B下的有ptuning

AdvertiseGen下载地址1地址2,文件中数据留几行

模型文件下载地址 (注意:ChatGLM2-6B对话用到的的模型文件不能简单的用到这里,bin文件可以复用,但其他文件一定要重新下载,否则要报一些错)

anaconda prompt中运行,进行虚拟环境

复制代码
cd /d D:\openai.wiki\ChatGLM2-6B
conda activate D:\openai.wiki\ChatGLM2-6B\ENV

运行微调除 ChatGLM2-6B 的依赖之外,还需要安装以下依赖

复制代码
pip install rouge_chinese nltk jieba datasets

先了解一下train.sh(仅在Linux中使用)里面各行的意义

复制代码
PRE_SEQ_LEN=128 #  soft prompt 长度
LR=2e-2     # 训练学习率
NUM_GPUS=2  # GPU卡的数量

torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
    --do_train \   # 执行训练功能,还可以执行评估功能
    --train_file AdvertiseGen/train.json \   # 训练文件目录
    --validation_file AdvertiseGen/fval.json \   # 验证文件目录
    --prompt_column content \       # 训练集中prompt提示名称,对应训练文件,测试文件的"content"
    --response_column summary \      # 训练集中答案名称,对应训练文件,测试文件的"summary"
    --overwrite_cache \              # 缓存,重复训练一次的时候可删除
    --model_name_or_path THUDM/chatglm-6b \  # 加载模型文件目录,也可修改为本地模型的路径
    --output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \    # 保存训练模型文件目录
    --overwrite_output_dir \     # 覆盖训练文件目录
    --max_source_length 64 \     # 最大输入文本的长度
    --max_target_length 128 \
    --per_device_train_batch_size 1 \    # batch_size 训练批次根据显存调节
    --per_device_eval_batch_size 1 \     # 验证批次
    --gradient_accumulation_steps 16 \   # 梯度累加的步数
    --predict_with_generate \
    --max_steps 3000 \    # 最大训练模型的步数
    --logging_steps 10 \  # 多少步打印日志一次
    --save_steps 1000 \    # 多少步保存模型一次
    --learning_rate $LR \  # 学习率
    --pre_seq_len $PRE_SEQ_LEN \
    --quantization_bit 4   # 量化,也可修改为int8

Windows下用以下的train.bat

因我的电脑显存只有8G,故将per_device_train_batch_size改为8

去掉--quantization_bit 4

复制代码
set PRE_SEQ_LEN=128
set LR=1e-4

python main.py ^
    --do_train ^
    --train_file AdvertiseGen/train.json ^
    --validation_file AdvertiseGen/dev.json ^
    --preprocessing_num_workers 10 ^
    --prompt_column content ^
    --response_column summary ^
    --overwrite_cache ^
    --model_name_or_path D:\\openai.wiki\\ChatGLM2-6B\\ptuning\\THUDM\\chatglm2-6b ^
    --output_dir D:/openai.wiki/ChatGLM2-6B/ptuning/output ^
    --overwrite_output_dir ^
    --max_source_length 64 ^
    --max_target_length 128 ^
    --per_device_train_batch_size 8 ^# batch_size 训练批次根据显存调节
    --per_device_eval_batch_size 1 ^
    --gradient_accumulation_steps 16 ^
    --predict_with_generate ^
    --max_steps 3000 ^
    --logging_steps 10 ^
    --save_steps 1000 ^
    --learning_rate %LR% ^
    --pre_seq_len %PRE_SEQ_LEN% 

进入ptuning文件夹

复制代码
cd ptuning

运行train.bat,即可开始训练(有问题的话继续往后看)

复制代码
train.bat

可能遇到的几个问题

  • 问题一

TypeError: JsonConfig.init() got an unexpected keyword argument 'use_auth_token'

解决方式

复制代码
pip uninstall datasets
pip install datasets==2.21.0
  • 问题二

name 'round_up' is not defined

解决方式

将train.bat中的--quantization_bit 4删除

或者pip install cpm_kernels

  • 问题三

AttributeError: 'ChatGLMModel' object has no attribute 'prefix_encoder'

解决方式

https://huggingface.co/THUDM/chatglm2-6b/tree/main

下载除bin文件以外的最新文件

相关推荐
ECT-OS-JiuHuaShan1 分钟前
麻烦是第一推动力,不厌其烦就是负熵流
开发语言·人工智能·数学建模·学习方法·量子计算
skywalk81633 分钟前
关于创建中文编程语言及自然语言转MoonBit的整合分析报告
大数据·人工智能
TMT星球10 分钟前
欧瑞博推出全新集成方案,用谷电做空调,一晚只需一度电
人工智能·语音识别
阿标在干嘛17 分钟前
使用科力辰app与依赖传统渠道获取科技业务信息的效率差
大数据·人工智能·科技
newsxun19 分钟前
首都现代物流骨干网络体系正式启动
大数据·人工智能
摸鱼仙人~29 分钟前
简单的GAN生成学习案例
人工智能·学习·生成对抗网络
Akamai中国37 分钟前
预先构建的CNCF流水线:从Git到在Kubernetes上运行
人工智能·云计算·云服务·云存储
DevSecOps选型指南39 分钟前
大模型应用安全挑战应对之道:悬镜问境 AIST 解决方案实践路径
人工智能·安全
海边夕阳200644 分钟前
【每天一个AI小知识】:什么是图神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习