Apache Spark中与数据分区相关的配置和运行参数

Apache Spark中与数据分区相关的配置和运行参数涉及多个方面,包括动态分区设置、分区数设置、Executor与并行度配置等。合理配置这些参数可以显著提高Spark作业的执行效率和资源利用率。在实际应用中,建议根据业务需求和计算集群的特性进行相应的调整和测试,以找到最优配置。

数据分区配置参数

• spark.sql.warehouse.dir:指定数据存储的目录。

• spark.sql.dynamicPartition.mode:设置动态分区的模式,通常设为dynamic,以启用动态分区功能。

• spark.sql.exec.dynamicPartition:允许动态分区的创建。

• hive.exec.dynamic.partition:允许Hive动态分区。

• hive.exec.dynamic.partition.mode:设置为nonstrict,以放宽Hive动态分区的限制。

分区数设置参数

• 手动设置分区数:

复制代码
• 在读取数据或进行数据处理时,可以使用repartition或coalesce函数手动设置RDD或DataFrame的分区数。

• repartition一定会发生shuffle,而coalesce则根据传入的参数来判断是否发生shuffle。

• 自动分区:

复制代码
• Spark在读取数据时,会根据数据源的特性自动设置分区数。例如,读取HDFS文件时,默认每个HDFS块(默认大小为128MB)会被视为一个分区。

Executor与并行度参数

虽然Executor的配置不直接决定分区数,但它们影响作业的并行度和每个分区的数据处理能力:

• spark.executor.instances:设置执行者实例的数量,即Executor的数量。Executor的数量决定了作业可以同时在多少个节点上并行执行。

• spark.executor.cores:设置每个执行者的核心数。每个Executor的CPU核心数决定了其能够同时处理的线程数。

• spark.executor.memory:设置每个Executor的内存大小。Executor的内存大小会影响其能够处理的数据量和并发任务数。

• spark.sql.shuffle.partitions:指定Shuffle操作后的分区数。这个参数决定了数据在进行Shuffle操作后的并行度。

其他相关参数

• spark.reducer.maxSizeInFlight:限制单个Reducer处理的数据大小,这个参数可以影响数据处理的效率和内存使用。

• spark.shuffle.file.buffer:为每个shuffle文件输出流的内存缓冲区大小,调大此参数可以减少在创建shuffle文件时进行磁盘搜索和系统调用的次数。

相关推荐
簌簌曌2 小时前
CentOS7 + JDK8 虚拟机安装与 Hadoop + Spark 集群搭建实践
大数据·hadoop·spark
Theodore_10224 小时前
大数据(1) 大数据概述
大数据·hadoop·数据分析·spark·hbase
Aurora_NeAr4 小时前
Apache Spark详解
大数据·后端·spark
qq_408413391 天前
spark 执行 hive sql数据丢失
hive·sql·spark
后端码匠1 天前
Spark 单机模式部署与启动
大数据·分布式·spark
qq_463944862 天前
【Spark征服之路-2.3-Spark运行架构】
大数据·架构·spark
yt948322 天前
如何在IDE中通过Spark操作Hive
ide·hive·spark
不吃饭的猪2 天前
记一次spark在docker本地启动报错
大数据·docker·spark
Leo.yuan2 天前
实时数据仓库是什么?数据仓库设计怎么做?
大数据·数据库·数据仓库·数据分析·spark
£菜鸟也有梦3 天前
从0到1,带你走进Flink的世界
大数据·hadoop·flink·spark