(PVG)Periodic Vibration Gaussian:自动驾驶过程中的三维重建 论文解读

Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering

文章目录

创新点

Periodic Vibration Gaussian (PVG) 模型

引入周期振动动态

动态引入:引入生命峰值 概念,为高斯点赋予不同生命周期,使其能表示动态特性。

原本的3DGS只能用于静态场景,现在引入周期振动动态,将 3DGS 扩展为支持动态场景的 PVG,增加时间维度。

每个高斯点被赋予动态特性,包括振动的中心位置(𝜇)和不透明度(o),这些特性随时间变化,可以有效捕捉动态运动

动态表达式

动态与静态统一表示

通过静态系数(ρ=β/l)区分静态和动态元素,ρ 较大表示静态点,较小表示动态点。

通过动态属性(如速度、振动方向等)和静态性系数的联合建模,自动区分动态和静态场景元素,无需额外分割操作

时序平滑机制

针对动态场景中的训练数据稀疏性问题,提出了一种基于平均速度(𝑣 )的时间平滑机制,增强了时间维度上的连续性。

通过对相邻时间戳间的高斯点状态进行线性估计,减轻了训练中对光流估计的依赖,降低了计算复杂度。

自监督机制:时间平滑机制结合自监督学习,让模型自动从稀疏的时间序列中学习动态趋势,减少了对人工标注数据的依赖。

位置自适应控制

针对无界场景的空间特性,通过调整高斯点的大小和分布,提高了表示的效率和质量

提出了针对场景范围的高斯点大小自适应调整方法:

在远离相机的地方使用较大的高斯点表示。

在近距离范围内使用更小的高斯点以保留细节。

这种方法显著减少了所需的高斯点数量,提高了表示效率,同时保持了渲染精度。

小tips

天空细化:

用高分辨率可学习环境立方体贴图处理天空高频细节,并在训练时对光线方向扰动增强抗锯齿。

相关推荐
白-胖-子1 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手2 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
NeoFii3 小时前
Day 22: 复习
机器学习
静心问道3 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.03 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
逐云者1233 小时前
Hierarchical-Localization 安装与常见问题解决手册
三维重建·colmap·hloc
小楓12014 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师4 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen4 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域4 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序