【AscendC】tiling方案设计不当引起的一个时隐时现的bug

在设计tiling方案时,通常会考虑到非对齐的场景,对输入数据进行补全操作从而使得非对齐场景也能正确的完成计算。但在某些算子的实现过程中,沿用上述操作却会造成数据的错误计算,且这种错误出现与否取决于随机生成的测试数据质量。本文笔者记录一个典型的错误,并分析产生该错误的原因。

对于exp操作来说,通过将其优化为max + exp(x - max)是一种常用的手段。但对于非对齐场景,上述优化之后的算子可能会出现问题。对于补齐的位置,通常是以补0作为典型的补齐手段,此时如果原数据的最大值为大于等于0的值,那么在计算max的过程不会产生影响,但是在计算x-max之后就会造成补0的位置的值变成了负数,从而经过指数操作之后会产生正值,如果其后有规约求和的操作就会造成求和的数目过大从而造成结果错误。

但是上述过程可能会出现无法检测的情况,也即补齐的数目非常少(例如只有1个位置需要补0),此时可能出现没有影响到最终结果的情况。

因此在tiling设计中尤其要注意非对齐场景,这些补齐的位置是否会对计算产生影响。

相关推荐
cver12327 分钟前
人脸情绪检测数据集-9,400 张图片 智能客服系统 在线教育平台 心理健康监测 人机交互优化 市场研究与广告 安全监控系统
人工智能·安全·yolo·计算机视觉·目标跟踪·机器人·人机交互
技术老金38 分钟前
LangGraph入门与避坑指南:从ReAct到复杂流程编排
人工智能·python
大佬喝可乐41 分钟前
卷积神经网络(CNN)全面解析
人工智能·神经网络·cnn
martinzh1 小时前
上下文学习的神奇魔法:轻松理解AI如何无师自通
人工智能
Hcoco_me1 小时前
【4】Transformers快速入门:自然语言模型 vs 统计语言模型
人工智能·语言模型·自然语言处理
机器之心1 小时前
Agent狂欢下的冷思考:为什么说Data&AI数据基础设施,才是AI时代Infra新范式
人工智能·openai
不焦躁的程序员1 小时前
选择gpt-5还是claude-4-sonnect
人工智能·gpt·cursor
算家计算1 小时前
阿里开源首个图像生成基础模型——Qwen-Image本地部署教程,超强中文渲染能力刷新SOTA!
人工智能·开源·aigc
汀丶人工智能2 小时前
AI Compass前沿速览:RynnVLA视觉-语言-动作模型、GLM-4.5V 、DreamVVT虚拟换衣、 WeKnora框架、GitMCP、Neural
人工智能
聚客AI2 小时前
👉FastMCP深度解析:ctx.sample() 如何实现LLM任务逆向委托
人工智能·llm·mcp