【AscendC】tiling方案设计不当引起的一个时隐时现的bug

在设计tiling方案时,通常会考虑到非对齐的场景,对输入数据进行补全操作从而使得非对齐场景也能正确的完成计算。但在某些算子的实现过程中,沿用上述操作却会造成数据的错误计算,且这种错误出现与否取决于随机生成的测试数据质量。本文笔者记录一个典型的错误,并分析产生该错误的原因。

对于exp操作来说,通过将其优化为max + exp(x - max)是一种常用的手段。但对于非对齐场景,上述优化之后的算子可能会出现问题。对于补齐的位置,通常是以补0作为典型的补齐手段,此时如果原数据的最大值为大于等于0的值,那么在计算max的过程不会产生影响,但是在计算x-max之后就会造成补0的位置的值变成了负数,从而经过指数操作之后会产生正值,如果其后有规约求和的操作就会造成求和的数目过大从而造成结果错误。

但是上述过程可能会出现无法检测的情况,也即补齐的数目非常少(例如只有1个位置需要补0),此时可能出现没有影响到最终结果的情况。

因此在tiling设计中尤其要注意非对齐场景,这些补齐的位置是否会对计算产生影响。

相关推荐
花月mmc1 分钟前
CanMV K230 波形识别——整体部署(4)
人工智能·python·嵌入式硬件·深度学习·信号处理
tel_1821753976713 分钟前
AOI全自动视觉检测生活用纸表面缺陷检测
人工智能·视觉检测·生活
萝卜不爱吃萝卜、14 分钟前
智能体来了:从 0 到 1 搭建个人 AI 助手
人工智能
一休哥助手21 分钟前
2026年2月2日人工智能早间新闻
人工智能
爱吃泡芙的小白白24 分钟前
CNN的FLOPs:从理论计算到实战避坑指南
人工智能·神经网络·cnn·flops
山居秋暝LS26 分钟前
Padim模型参数
人工智能·机器学习
藦卡机器人33 分钟前
国产分拣机器人品牌有哪一些做的比较好的推荐?
人工智能
GJGCY37 分钟前
2026主流智能体平台技术路线差异,各大平台稳定性与集成能力对比
人工智能·经验分享·ai·智能体
橙露43 分钟前
视觉检测中的数字光纤放大器的核心参数和调整
人工智能·计算机视觉·视觉检测
Rorsion1 小时前
机器学习过程(从机器学习到深度学习)
人工智能·深度学习·机器学习