【AscendC】tiling方案设计不当引起的一个时隐时现的bug

在设计tiling方案时,通常会考虑到非对齐的场景,对输入数据进行补全操作从而使得非对齐场景也能正确的完成计算。但在某些算子的实现过程中,沿用上述操作却会造成数据的错误计算,且这种错误出现与否取决于随机生成的测试数据质量。本文笔者记录一个典型的错误,并分析产生该错误的原因。

对于exp操作来说,通过将其优化为max + exp(x - max)是一种常用的手段。但对于非对齐场景,上述优化之后的算子可能会出现问题。对于补齐的位置,通常是以补0作为典型的补齐手段,此时如果原数据的最大值为大于等于0的值,那么在计算max的过程不会产生影响,但是在计算x-max之后就会造成补0的位置的值变成了负数,从而经过指数操作之后会产生正值,如果其后有规约求和的操作就会造成求和的数目过大从而造成结果错误。

但是上述过程可能会出现无法检测的情况,也即补齐的数目非常少(例如只有1个位置需要补0),此时可能出现没有影响到最终结果的情况。

因此在tiling设计中尤其要注意非对齐场景,这些补齐的位置是否会对计算产生影响。

相关推荐
sanduo1121 分钟前
AI 原生(AI-Native)&架构极简主义
人工智能·架构·ai-native
zhengfei61126 分钟前
【开源渗透工具】——一个开源的多模态大型语言模型红队框架OpenRT
人工智能·语言模型·开源
WJSKad123529 分钟前
工业零件识别与分类:基于lad_r50-paa-r101_fpn_2xb8_coco_1x模型实现
人工智能·分类·数据挖掘
千汇数据的老司机37 分钟前
靠资源拿项目VS靠技术拿项目,二者的深刻区分。
大数据·人工智能·谈单
聚城云-GeecityCloud1 小时前
物业行业:在矛盾与转型中回归服务本质
人工智能·数据挖掘·回归
a3158238061 小时前
基于大语言模型的新闻判断技术
人工智能·语言模型·自然语言处理
亚里随笔1 小时前
超越LoRA:参数高效强化学习方法的全面评估与突破
人工智能·深度学习·机器学习·lora·rl
computersciencer1 小时前
机器学习入门:什么是机器学习
人工智能·机器学习
Java后端的Ai之路2 小时前
【机器学习】- CatBoost模型参数详细说明
人工智能·机器学习·catboost·模型参数
java1234_小锋2 小时前
AI蒸馏技术:让AI更智能、更高效
人工智能·ai·ai蒸馏