【AscendC】tiling方案设计不当引起的一个时隐时现的bug

在设计tiling方案时,通常会考虑到非对齐的场景,对输入数据进行补全操作从而使得非对齐场景也能正确的完成计算。但在某些算子的实现过程中,沿用上述操作却会造成数据的错误计算,且这种错误出现与否取决于随机生成的测试数据质量。本文笔者记录一个典型的错误,并分析产生该错误的原因。

对于exp操作来说,通过将其优化为max + exp(x - max)是一种常用的手段。但对于非对齐场景,上述优化之后的算子可能会出现问题。对于补齐的位置,通常是以补0作为典型的补齐手段,此时如果原数据的最大值为大于等于0的值,那么在计算max的过程不会产生影响,但是在计算x-max之后就会造成补0的位置的值变成了负数,从而经过指数操作之后会产生正值,如果其后有规约求和的操作就会造成求和的数目过大从而造成结果错误。

但是上述过程可能会出现无法检测的情况,也即补齐的数目非常少(例如只有1个位置需要补0),此时可能出现没有影响到最终结果的情况。

因此在tiling设计中尤其要注意非对齐场景,这些补齐的位置是否会对计算产生影响。

相关推荐
dog2507 分钟前
世界的本质是概率,没有因果
人工智能·概率
Coding茶水间12 分钟前
基于深度学习的木薯病害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
wan55cn@126.com15 分钟前
人类文明可通过技术手段(如加强航天器防护、改进电网设计)缓解地球两极反转带来的影响
人工智能·笔记·搜索引擎·百度·微信
c#上位机19 分钟前
halcon刚性变换(平移+旋转)——vector_to_rigid
图像处理·人工智能·计算机视觉·c#·halcon
张彦峰ZYF25 分钟前
AI赋能原则6解读思考:深度专业、跨界能力与工具协同的复合竞争力-AI时代的人才新逻辑
人工智能·ai·ai赋能和落地
机器学习之心HML35 分钟前
机器学习之心程序和数据清单
人工智能
LiYingL36 分钟前
针对大规模语言模型的离群值安全预训练创新,可防止离群值并保护量化准确性
人工智能·机器学习·语言模型
ekprada39 分钟前
Day 37 - 早停策略与模型权重的保存
人工智能·机器学习
致Great1 小时前
Nano Banana提示语精选
人工智能·gpt·chatgpt·开源·agent
文弱_书生1 小时前
关于模型学习策略
人工智能·深度学习·神经网络