【AscendC】tiling方案设计不当引起的一个时隐时现的bug

在设计tiling方案时,通常会考虑到非对齐的场景,对输入数据进行补全操作从而使得非对齐场景也能正确的完成计算。但在某些算子的实现过程中,沿用上述操作却会造成数据的错误计算,且这种错误出现与否取决于随机生成的测试数据质量。本文笔者记录一个典型的错误,并分析产生该错误的原因。

对于exp操作来说,通过将其优化为max + exp(x - max)是一种常用的手段。但对于非对齐场景,上述优化之后的算子可能会出现问题。对于补齐的位置,通常是以补0作为典型的补齐手段,此时如果原数据的最大值为大于等于0的值,那么在计算max的过程不会产生影响,但是在计算x-max之后就会造成补0的位置的值变成了负数,从而经过指数操作之后会产生正值,如果其后有规约求和的操作就会造成求和的数目过大从而造成结果错误。

但是上述过程可能会出现无法检测的情况,也即补齐的数目非常少(例如只有1个位置需要补0),此时可能出现没有影响到最终结果的情况。

因此在tiling设计中尤其要注意非对齐场景,这些补齐的位置是否会对计算产生影响。

相关推荐
希艾席帝恩几秒前
数字孪生正在悄然改变交通管理方式
大数据·人工智能·数字孪生·数据可视化·数字化转型
大千AI助手几秒前
Kaldi:开源语音识别工具链的核心架构与技术演进
人工智能·机器学习·架构·开源·语音识别·kaldi·大千ai助手
龙腾AI白云几秒前
基于Tensorflow库的RNN模型预测实战Tensorflow库简介循环神经网络简介
人工智能·fastapi
free-elcmacom2 分钟前
深度学习<1>PyTorch与TensorFlow新特性深度解析
人工智能·pytorch·python·深度学习·tensorflow
yousuotu5 分钟前
基于Python 实现亚马逊销售数据可视化
人工智能·机器学习
东坡肘子6 分钟前
Swift、SwiftUI 与 SwiftData:走向成熟的 2025 -- 肘子的 Swift 周报 #116
人工智能·swiftui·swift
智慧化智能化数字化方案7 分钟前
解读 2025 高质量数据集 建设指南【附全文阅读】
大数据·人工智能·高质量数据集 建设指南
buttonupAI8 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_904876488 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
竣雄8 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉