【深度学习】神经网络之Softmax

Softmax 函数是神经网络中常用的一种激活函数,尤其在分类问题中广泛应用。它将一个实数向量转换为概率分布,使得每个输出值都位于 [0, 1] 之间,并且所有输出值的和为 1。这样,Softmax 可以用来表示各类别的预测概率。

Softmax 函数的定义

给定一个实数向量 z=[z1,z2,...,zn],Softmax 函数的输出是一个概率分布,定义如下:

其中:

  • zi是输入向量 z 中的第 i 个元素。
  • ezi是 zi 的指数。
  • 分母是对所有元素的指数进行求和,确保输出的概率和为 1。

Softmax 的特点

  1. 输出范围:每个输出值在 [0, 1] 之间,适合作为概率。
  2. 归一化:所有输出的和为 1,这使得输出可以视为概率。
  3. 强化最大值:Softmax 将输入向量中最大的元素映射为最大的概率,通常用于多分类问题的最终输出层。

应用场景

  1. 多类分类问题:在神经网络的输出层,Softmax 通常用于多分类问题,例如图像分类、文本分类等。它将每个类别的原始预测值(即神经网络的输出)转换为概率,从而能够判断输入属于每个类别的概率。
  2. 回归任务:虽然 Softmax 主要用于分类问题,但在某些情况下它也可以应用于回归任务中的概率预测。

计算示例

假设有一个网络的输出向量 z=[2,1,0.1],我们想计算该向量通过 Softmax 函数后的输出:

  1. 计算每个 e^{z_i}:

    • e2≈7.389e^2
    • e1≈2.718e^1
    • e0.1≈1.105e^{0.1}
  2. 求和:

  3. 计算每个类别的概率:

最终,Softmax 输出的概率分布为 [0.659,0.242,0.099],即该网络认为输入属于第一个类别的概率为 65.9%,属于第二个类别的概率为 24.2%,属于第三个类别的概率为 9.9%。

总结

Softmax 是神经网络中用于多类分类问题的常见激活函数,通过将网络的输出转化为概率分布,帮助我们理解模型的预测结果,并且通过概率值判断输入属于各类别的可能性。

相关推荐
Gyoku Mint40 分钟前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
人大博士的交易之路1 小时前
今日行情明日机会——20250606
大数据·数学建模·数据挖掘·数据分析·涨停回马枪
猛犸MAMMOTH2 小时前
Python打卡第46天
开发语言·python·机器学习
产品何同学2 小时前
数据分析后台设计指南:实战案例解析与5大设计要点总结
数据挖掘·数据分析·产品经理·墨刀·原型设计·后台管理系统·数据分析后台
小wanga3 小时前
【递归、搜索与回溯】专题三 穷举vs暴搜vs回溯vs剪枝
c++·算法·机器学习·剪枝
deephub4 小时前
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
人工智能·pytorch·python·深度学习·机器学习·正则化
小于不是小鱼呀4 小时前
手撕 K-Means
人工智能·算法·机器学习
m0_740154674 小时前
K-Means颜色变卦和渐变色
算法·机器学习·kmeans
lilye665 小时前
精益数据分析(95/126):Socialight的定价转型启示——B2B商业模式的价格策略与利润优化
人工智能·数据挖掘·数据分析
fydw_7155 小时前
Celery 核心概念详解及示例
人工智能·机器学习