【深度学习】神经网络之Softmax

Softmax 函数是神经网络中常用的一种激活函数,尤其在分类问题中广泛应用。它将一个实数向量转换为概率分布,使得每个输出值都位于 [0, 1] 之间,并且所有输出值的和为 1。这样,Softmax 可以用来表示各类别的预测概率。

Softmax 函数的定义

给定一个实数向量 z=[z1,z2,...,zn],Softmax 函数的输出是一个概率分布,定义如下:

其中:

  • zi是输入向量 z 中的第 i 个元素。
  • ezi是 zi 的指数。
  • 分母是对所有元素的指数进行求和,确保输出的概率和为 1。

Softmax 的特点

  1. 输出范围:每个输出值在 [0, 1] 之间,适合作为概率。
  2. 归一化:所有输出的和为 1,这使得输出可以视为概率。
  3. 强化最大值:Softmax 将输入向量中最大的元素映射为最大的概率,通常用于多分类问题的最终输出层。

应用场景

  1. 多类分类问题:在神经网络的输出层,Softmax 通常用于多分类问题,例如图像分类、文本分类等。它将每个类别的原始预测值(即神经网络的输出)转换为概率,从而能够判断输入属于每个类别的概率。
  2. 回归任务:虽然 Softmax 主要用于分类问题,但在某些情况下它也可以应用于回归任务中的概率预测。

计算示例

假设有一个网络的输出向量 z=[2,1,0.1],我们想计算该向量通过 Softmax 函数后的输出:

  1. 计算每个 e^{z_i}:

    • e2≈7.389e^2
    • e1≈2.718e^1
    • e0.1≈1.105e^{0.1}
  2. 求和:

  3. 计算每个类别的概率:

最终,Softmax 输出的概率分布为 [0.659,0.242,0.099],即该网络认为输入属于第一个类别的概率为 65.9%,属于第二个类别的概率为 24.2%,属于第三个类别的概率为 9.9%。

总结

Softmax 是神经网络中用于多类分类问题的常见激活函数,通过将网络的输出转化为概率分布,帮助我们理解模型的预测结果,并且通过概率值判断输入属于各类别的可能性。

相关推荐
龙山云仓1 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
十铭忘2 小时前
个人思考3——世界动作模型
人工智能·深度学习·计算机视觉
kkkkkkkkk_12012 小时前
【强化学习】09周博磊强化学习纲要学习笔记——第五课上
笔记·深度学习·学习·强化学习
rgb2gray2 小时前
优多元分层地理探测器模型(OMGD)研究
人工智能·算法·机器学习·回归·gwr
小王毕业啦2 小时前
2007-2024年 上市公司-投资者情绪数据(xlsx)
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·经管数据
(; ̄ェ ̄)。2 小时前
机器学习入门(二十一)特征工程
人工智能·机器学习
AI生成网页工具2 小时前
专业解读:智能硬件渠道顾问如何平衡短期销量与长期体系健康?
数据挖掘
相思半3 小时前
告别聊天机器人!2026 智能体元年:Claude 4.6 vs GPT-5.3 vs OpenClaw 全方位对比
人工智能·gpt·深度学习·claude·codex·智能体·seedance
人工智能培训3 小时前
大模型架构演进:从Transformer到MoE
人工智能·深度学习·大模型·transformer·知识图谱·具身智能·人工智能 培训
查无此人byebye4 小时前
实战DDPM扩散模型:MNIST手写数字生成+FID分数计算(完整可运行版)
人工智能·pytorch·python·深度学习·音视频