【深度学习】神经网络之Softmax

Softmax 函数是神经网络中常用的一种激活函数,尤其在分类问题中广泛应用。它将一个实数向量转换为概率分布,使得每个输出值都位于 [0, 1] 之间,并且所有输出值的和为 1。这样,Softmax 可以用来表示各类别的预测概率。

Softmax 函数的定义

给定一个实数向量 z=[z1,z2,...,zn],Softmax 函数的输出是一个概率分布,定义如下:

其中:

  • zi是输入向量 z 中的第 i 个元素。
  • ezi是 zi 的指数。
  • 分母是对所有元素的指数进行求和,确保输出的概率和为 1。

Softmax 的特点

  1. 输出范围:每个输出值在 [0, 1] 之间,适合作为概率。
  2. 归一化:所有输出的和为 1,这使得输出可以视为概率。
  3. 强化最大值:Softmax 将输入向量中最大的元素映射为最大的概率,通常用于多分类问题的最终输出层。

应用场景

  1. 多类分类问题:在神经网络的输出层,Softmax 通常用于多分类问题,例如图像分类、文本分类等。它将每个类别的原始预测值(即神经网络的输出)转换为概率,从而能够判断输入属于每个类别的概率。
  2. 回归任务:虽然 Softmax 主要用于分类问题,但在某些情况下它也可以应用于回归任务中的概率预测。

计算示例

假设有一个网络的输出向量 z=[2,1,0.1],我们想计算该向量通过 Softmax 函数后的输出:

  1. 计算每个 e^{z_i}:

    • e2≈7.389e^2
    • e1≈2.718e^1
    • e0.1≈1.105e^{0.1}
  2. 求和:

  3. 计算每个类别的概率:

最终,Softmax 输出的概率分布为 [0.659,0.242,0.099],即该网络认为输入属于第一个类别的概率为 65.9%,属于第二个类别的概率为 24.2%,属于第三个类别的概率为 9.9%。

总结

Softmax 是神经网络中用于多类分类问题的常见激活函数,通过将网络的输出转化为概率分布,帮助我们理解模型的预测结果,并且通过概率值判断输入属于各类别的可能性。

相关推荐
简简单单做算法16 分钟前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
就决定是你啦!1 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
liruiqiang054 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习
鸿蒙布道师6 小时前
OpenAI战略转向:开源推理模型背后的行业博弈与技术趋势
人工智能·深度学习·神经网络·opencv·自然语言处理·openai·deepseek
智能汽车人6 小时前
自动驾驶---学术论文的常客:nuScenes数据集的使用
人工智能·机器学习·自动驾驶
小白的高手之路6 小时前
torch.nn.Conv2d介绍——Pytorch中的二维卷积层
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
船长@Quant6 小时前
PyTorch量化进阶教程:第五章 Transformer 在量化交易中的应用
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lab
liruiqiang057 小时前
循环神经网络 - 通用近似定理 & 图灵完备
人工智能·rnn·深度学习·神经网络·机器学习
Panesle7 小时前
广告推荐算法:COSMO算法与A9算法的对比
人工智能·算法·机器学习·推荐算法·广告推荐
hunteritself7 小时前
DeepSeek重磅升级,豆包深度思考,ChatGPT原生生图,谷歌Gemini 2.5 Pro!| AI Weekly 3.24-3.30
人工智能·深度学习·chatgpt·开源·语音识别·deepseek