数据分析如何正确使用ChatGPT进行辅助?

目录

1.数据介绍

2.特征工程

3.EDA分析

4.数据相关性分析

5.分析总结


**一篇优秀的学术论文,肯定有新颖、适当的论证视角,**选择恰当的研究方法,搭建逻辑严密、平衡的论证框架,把有力的数据分析紧密结合起来,这样一篇论文将具有逻辑严密的论证过程。小编在之前的AI工具论文写作流程中,介绍了大量论文文字工作, 今天小编使用Kaggle数据,给大家分享一下学术论文中数据分析相关内容使用Kimi的效果。

1.数据介绍

首先介绍一下数据集,数据集我在Kaggle上下载了一个房价预测的数据集。具体使用到的有两个文件。

-------------------------------------------------------

其中**[data_description.txt]**文件主要是对数据集中每一列的描述。

-------------------------------------------------------

**[train.csv]**就是今天案例所用到的数据集了。

2.特征工程

我们先让Kimi对数据做一下特征工程。

**特征工程(Feature Engineering)**是数据预处理和机器学习领域中的一个重要步骤。它涉及到从原始数据中选择、修改和创建新的特征(即数据的属性或变量),以便更好地适应机器学习算法的需求,并最终提高模型的性能。特征工程的主要目的是使原始数据集更适合用于建模和分析。

提示词:

根据data_description.txt对数据集的描述

Train.csv进行特征工程


ChatGPT反馈:

3.EDA分析

让ChatGPT对数据做Exploratory data analysis (探索性数据分析)。

**探索性数据分析(Exploratory Data Analysis,简称EDA)**是数据分析的一种方法论,它侧重于使用各种技术来大致理解数据集的主要特征。这个过程通常是数据分析项目的初步步骤,旨在通过摘要和可视化手段来发现数据的模式、异常、关键变量和潜在的关系。

提示词:

根据特征工程后的数据,对数据集进行Exploratory data analysis (探索性数据分析)


ChatGPT反馈:

4.数据相关性分析

最后我们让ChatGPT对数据集中对房价影响最大的15种数据进行相关性分析。

提示词:

提取对房屋销售价格影响最高的15个特征做相关性分析。


ChatGPT反馈:

5.分析总结

最后我们让ChatGPT对分析过程做一个总结。ChatGPT做数据分析也相当简单,而且生成的图表也可直接用于论文辅佐论点的论证!

提示词:

站在一个**[数据分析师]**的角度 对上述分析过程做一个总结。


ChatGPT反馈:

相关推荐
Hello.Reader几秒前
Flink SQL EXPLAIN “看懂计划”到“用 PLAN_ADVICE 调优”
大数据·sql·flink
HyperAI超神经3 分钟前
【vLLM 学习】vLLM TPU 分析
开发语言·人工智能·python·学习·大语言模型·vllm·gpu编程
AI营销实验室3 分钟前
AI CRM系统线索打分,原圈科技引爆销售增长
人工智能·科技
爱笑的眼睛116 分钟前
FastAPI 请求验证:超越 Pydantic 基础,构建企业级验证体系
java·人工智能·python·ai
拉姆哥的小屋6 分钟前
基于深度学习的瞬变电磁法裂缝参数智能反演研究
人工智能·python·深度学习
木头左7 分钟前
基于LSTM的多维特征融合量化交易策略实现
人工智能·rnn·lstm
Maynor9968 分钟前
全面体验 Grok API 中转站(2025 · Grok 4 系列最新版)
人工智能
铅笔侠_小龙虾10 分钟前
深度学习--阶段总结(1)
人工智能·深度学习·ai·回归
前端阿森纳14 分钟前
公司是否因为AI正在从“以人为本”走向“以核心数据集为本”?
架构·aigc
钱彬 (Qian Bin)14 分钟前
项目实践11—全球证件智能识别系统(切换为PostgreSQL数据库)
人工智能·qt·fastapi