数据分析如何正确使用ChatGPT进行辅助?

目录

1.数据介绍

2.特征工程

3.EDA分析

4.数据相关性分析

5.分析总结


**一篇优秀的学术论文,肯定有新颖、适当的论证视角,**选择恰当的研究方法,搭建逻辑严密、平衡的论证框架,把有力的数据分析紧密结合起来,这样一篇论文将具有逻辑严密的论证过程。小编在之前的AI工具论文写作流程中,介绍了大量论文文字工作, 今天小编使用Kaggle数据,给大家分享一下学术论文中数据分析相关内容使用Kimi的效果。

1.数据介绍

首先介绍一下数据集,数据集我在Kaggle上下载了一个房价预测的数据集。具体使用到的有两个文件。

-------------------------------------------------------

其中**[data_description.txt]**文件主要是对数据集中每一列的描述。

-------------------------------------------------------

**[train.csv]**就是今天案例所用到的数据集了。

2.特征工程

我们先让Kimi对数据做一下特征工程。

**特征工程(Feature Engineering)**是数据预处理和机器学习领域中的一个重要步骤。它涉及到从原始数据中选择、修改和创建新的特征(即数据的属性或变量),以便更好地适应机器学习算法的需求,并最终提高模型的性能。特征工程的主要目的是使原始数据集更适合用于建模和分析。

提示词:

根据data_description.txt对数据集的描述

Train.csv进行特征工程


ChatGPT反馈:

3.EDA分析

让ChatGPT对数据做Exploratory data analysis (探索性数据分析)。

**探索性数据分析(Exploratory Data Analysis,简称EDA)**是数据分析的一种方法论,它侧重于使用各种技术来大致理解数据集的主要特征。这个过程通常是数据分析项目的初步步骤,旨在通过摘要和可视化手段来发现数据的模式、异常、关键变量和潜在的关系。

提示词:

根据特征工程后的数据,对数据集进行Exploratory data analysis (探索性数据分析)


ChatGPT反馈:

4.数据相关性分析

最后我们让ChatGPT对数据集中对房价影响最大的15种数据进行相关性分析。

提示词:

提取对房屋销售价格影响最高的15个特征做相关性分析。


ChatGPT反馈:

5.分析总结

最后我们让ChatGPT对分析过程做一个总结。ChatGPT做数据分析也相当简单,而且生成的图表也可直接用于论文辅佐论点的论证!

提示词:

站在一个**[数据分析师]**的角度 对上述分析过程做一个总结。


ChatGPT反馈:

相关推荐
西猫雷婶12 小时前
CNN卷积计算
人工智能·神经网络·cnn
贝多芬也爱敲代码13 小时前
如何减小ES和mysql的同步时间差
大数据·mysql·elasticsearch
格林威13 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
lyx331369675914 小时前
#深度学习基础:神经网络基础与PyTorch
pytorch·深度学习·神经网络·参数初始化
异次元的星星14 小时前
智慧新零售时代:施易德系统平衡技术与人力,赋能门店运营
大数据·零售
倔强青铜三14 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
B站计算机毕业设计之家15 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
高工智能汽车15 小时前
棱镜观察|极氪销量遇阻?千里智驾左手服务吉利、右手对标华为
人工智能·华为
txwtech15 小时前
第6篇 OpenCV RotatedRect如何判断矩形的角度
人工智能·opencv·计算机视觉
正牌强哥15 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare