019:什么是 Resnet50 神经网络

本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。

合集完整版请查看这里

在上一节中,使用了一个简单的神经网络进行识别数字。

这个网络结构非常简单,一是因为层数少,二是因为结构是顺序的,没有其他分支结构。

这类神经网络的结构表示起来大概就像是:conv -> relu -> conv -> relu -> maxpool -> fc 这种,一层连接着一层,这种神经网络结构可以被称为顺序结构的神经网络,也是最简单的一种结构。

现在介绍一个相对来说更加复杂,但我认为在计算机视觉领域非常重要的一个神经网络结构------Resnet50 模型结构。

本专栏后面所有的算法解析、代码实战以及模型的性能调优,也都是基于该神经网络模型来进行的。

什么是 Resnet50 神经网络

Resnet 神经网络是何凯明在《Deep Residual Learning for Image Recognition》论文中首次提出的。

Resnet50 模型之所以叫这个名字,是因为模型的核心思想就藏在名字里。

名字可以拆分为:Res + net + 50,Res 是 Residual (残差)的缩写,50 指的是整个网络中有 50 个卷积层。

Resnet 有很多系列,比如 Resnet18, Resnet101等,后面跟的数字代表的是神经网络中的卷积层的数量。

基本上你可以这么理解:数字越大,卷积层越多,网络的深度越深,神经网络提取的特征越多。

下图是 Resnet 各系列的网络结构汇总表。可以看到在 Resnet50 的那一列中,从第一层到最后一层,总共50个卷积算法,这里把最后一层的全连接层也看做了卷积,至于为什么可以这么看,是因为两者有算法等价关系。

残差

那么 Res(Residual)残差又是个什么东西呢?

所谓残差,其实就是在顺序连接的神经网络中,增加了一个 short cut 分支结构,俗称为高速公路。

比如,在上一节手写数字识别那个里子中,模型是一层一层往下传的,这种顺序的神经网络如果层数不多,是完全可以使用的的,但是如果层数很深(比如50层或者几百层),数据这么一层一层往下传,在训练时就会发现神经网络很难被训练出来。

训练不出来的原因有很多,其中一个可能是由于反向传播时梯度消失的问题。

而残差结构就是为了解决这个问题。

如下图所示,左侧是正常的神经网络层,一层层往下传,在右侧增加一条连线,使得整个网络结构形成了一个残差结构。这样,网络的输出不再是单纯卷积的输出 F(x),而是原来的输出和输入的叠加 F(x) + X。

右侧的连线也被叫做高速公路:输入数据X不经过任何运算,可以快速到达输出的地方。

正是由于这个高速公路的存在,使得数据(无论是正向传播还是反向传播时传递梯度),数据都可以"无损"的通过,避免了上面说到的梯度消失的问题。

这种结构就是残差结构,在很多CV任务中,几乎都可以看到这种结构的存在,不论是图像识别的网络,还是目标检测的网络。

总结一下

Resnet50 是一个经典的图像分类网络,并且在图像分类任务上表现出色,它的创新就是引入了残差结构来确保网络深度可以搭建的很深。

很多工业项目中,会以 resnet50 为 back bone(骨干网络)来构建自己的神经网络。

也就说,不少CV网络中的骨干结构就是 resnet 结构,算法的层数不一定是50层,但是算法、原理几乎是一样的,在这个骨干结构的前后,在加一些模型自有的算法,从而来完成自己的特定任务。

为什么可以这样?

是因为resnet这种结构,包括卷积参数的设计,被证实有很强的图像特征提取能力,只要是图像任务,即使不是识别也需要提取特征,因此将 resnet 结构作为一种特征提取器来使用。

除此之外,几乎每一家做 AI 芯片的公司,都会以 resnet50 这个神经网络在自家芯片上跑出来的性能数据来作为宣传手段,这是因为只要这个网络性能好,就说明这家芯片至少在计算机视觉这个大领域内,性能都会有较好的泛化性,可见该模型的重要性。

相关推荐
白-胖-子1 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手2 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道3 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.04 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12014 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师4 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen4 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域4 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木4 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
AntBlack5 小时前
从小不学好 ,影刀 + ddddocr 实现图片验证码认证自动化
后端·python·计算机视觉