Pytorch - YOLOv11自定义资料训练

►前言

本篇将讲解目前最新推出的YOLOv11搭配Roboflow进行自定义资料标注训练流程,透过Colab上进行实作说明,使大家能够容易的了解YOLOv11的使用。

►YOLO 框架下载与导入

►Roboflow 的资料收集与标注

进行自定义资料集建置与上传

透过Roboflow工具进行资料标注,最后再将训练资料采用YOLOv11格式输出。

►自定义资料导入

►模型训练

►模型训练结果可视化

►模型训练结果可视化

►小结

透过以上讲解,在Colab上搭配Roboflow进行自定义资料收集与训练,能够更快的进行YOLOv11的模型训练,可以期待下一篇博文吧!

►Q&A

Q1: YOLOv11 有哪些新特性?:

A1: 透过GPU最佳化和架构改进,YOLOv11的训练和推理速度比以往版本快得多,延迟减少高达25%。

Q2:YOLOv11包含哪些模型?

A2: 目标检测模型、实例分割模型、姿态估计模型、旋转边界框模型、影像分类模型。

Q3 : YOLOv8 vs YOLOv11:模型效能比较?

A3:YOLOv11n 在精确度上超越了 YOLOv8n,平均精确度(mAP)为 39.5,而 YOLOv8n 为 37.3,显示 YOLOv11n 在影像中的目标侦测能力更强。

Q4: YOLOv11 是否能够于嵌入端使用?

A4:目前已能够透过tensorRT、 NCNN或TFLite,于嵌入端使用。

Q5: NCNN与tensorRT差异?

A5: NCNN针对CPU效能进行部署与最佳化,记忆体占用率低,提供INT8量化支援。TensorRT针对GPU和CPU优化加速模型推理,支援INT8量化和FP16量化。对于嵌入端提供Nvidia GPU可以透过TensorRT进行加速。

点击此处登录大大通,阅读更多精彩技术内容吧!

相关推荐
骥龙10 分钟前
第六篇:AI平台篇 - 从Jupyter Notebook到生产级模型服务
ide·人工智能·jupyter
TOPGUS11 分钟前
谷歌SEO第三季度点击率趋势:榜首统治力的衰退与流量的去中心化趋势
大数据·人工智能·搜索引擎·去中心化·区块链·seo·数字营销
一招定胜负22 分钟前
入门MediaPipe:实现实时手部关键点检测
计算机视觉
松☆24 分钟前
CANN深度解析:构建高效AI推理引擎的软件基
人工智能
ujainu27 分钟前
CANN仓库中的AIGC可持续演进工程:昇腾AI软件栈如何构建“活”的开源生态
人工智能·开源·aigc
光锥智能38 分钟前
从连接机器到激活知识:探寻工业互联网深水区的山钢范式
人工智能
GHL28427109040 分钟前
分析式AI学习
人工智能·学习·ai编程
ujainu1 小时前
CANN仓库中的AIGC性能极限挑战:昇腾软件栈如何榨干每一瓦算力
人工智能·开源
wenzhangli71 小时前
ooderA2UI BridgeCode 深度解析:从设计原理到 Trae Solo Skill 实践
java·开发语言·人工智能·开源
brave and determined1 小时前
CANN ops-nn算子库使用教程:实现神经网络在NPU上的加速计算
人工智能·深度学习·神经网络