【线性代数】列主元法求矩阵的逆

列主元方法是一种用于求解矩阵逆的数值方法,特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵,然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵 A A A 的逆的步骤:

精确算法\] 列主元高斯消元法 **步骤 1:初始化** 构造增广矩阵 \[ A ∣ I \] \[A \| I\] \[A∣I\],其中 I I I 是 n n n 阶单位矩阵。 **步骤 2:列主元选择** 对于第 k k k 列( k = 1 , 2 , ... , n k = 1, 2, \\ldots, n k=1,2,...,n),找到列主元,即找到 i k i_k ik 使得: ∣ a i k , k ∣ = max ⁡ i ≥ k ∣ a i , k ∣ \|a_{i_k,k}\| = \\max_{i \\geq k} \|a_{i,k}\| ∣aik,k∣=i≥kmax∣ai,k∣ 如果 i k ≠ k i_k \\neq k ik=k,则交换第 k k k 行和第 i k i_k ik 行。 **步骤 3:高斯消元** 对于每一列 k k k( k = 1 , 2 , ... , n − 1 k = 1, 2, \\ldots, n-1 k=1,2,...,n−1),进行以下操作: * 归一化第 k k k 行的列主元: a k , k ← 1 a k , k a_{k,k} \\leftarrow \\frac{1}{a_{k,k}} ak,k←ak,k1 * 更新第 k k k 行的其他元素: a k , j ← a k , j a k , k 对于所有 j ≠ k a_{k,j} \\leftarrow \\frac{a_{k,j}}{a_{k,k}} \\quad \\text{对于所有 } j \\neq k ak,j←ak,kak,j对于所有 j=k * 消去下方所有行的第 k k k 列元素: 对于所有 i \> k i \> k i\>k,计算: m i , k = a i , k m_{i,k} = a_{i,k} mi,k=ai,k 然后更新第 i i i 行: a i , j ← a i , j − m i , k ⋅ a k , j 对于所有 j a_{i,j} \\leftarrow a_{i,j} - m_{i,k} \\cdot a_{k,j} \\quad \\text{对于所有 } j ai,j←ai,j−mi,k⋅ak,j对于所有 j **步骤 4:回代求解** 当矩阵 A A A 被转换为上三角矩阵后,从最后一行开始回代: 对于每一行 k k k( k = n , n − 1 , ... , 1 k = n, n-1, \\ldots, 1 k=n,n−1,...,1),进行以下操作: * 归一化第 k k k 行的最后一个非零元素(即对角线元素): a k , k ← 1 a k , k a_{k,k} \\leftarrow \\frac{1}{a_{k,k}} ak,k←ak,k1 * 更新第 k k k 行的其他元素: a k , j ← a k , j a k , k 对于所有 j ≠ k a_{k,j} \\leftarrow \\frac{a_{k,j}}{a_{k,k}} \\quad \\text{对于所有 } j \\neq k ak,j←ak,kak,j对于所有 j=k * 消去上方所有行的第 k k k 列元素: 对于所有 i \< k i \< k i\

相关推荐
田梓燊3 小时前
数学复习笔记 12
笔记·线性代数·机器学习
广州智造10 小时前
OptiStruct实例:3D实体转子分析
数据库·人工智能·算法·机器学习·数学建模·3d·性能优化
北上ing13 小时前
算法练习:19.JZ29 顺时针打印矩阵
算法·leetcode·矩阵
ayiya_Oese14 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz14 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
IT古董17 小时前
【漫话机器学习系列】261.工具变量(Instrumental Variables)
人工智能·机器学习
jerry60920 小时前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
汉克老师20 小时前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
lucky_lyovo20 小时前
机器学习-特征工程
人工智能·机器学习
我想睡觉26121 小时前
Python训练营打卡DAY27
开发语言·python·机器学习