torch.tile 手动实现 kron+矩阵乘法

文章目录

  • [1. tile](#1. tile)
  • [2. pytorch](#2. pytorch)

1. tile

torch.tile 是对矩阵进行指定维度的复制数据,为了实现矩阵复制,使用kron 算子将对角矩阵I 复制后形成基于行变换和列变换的矩阵

2. pytorch

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

torch.set_printoptions(precision=3, sci_mode=False)

if __name__ == "__main__":
    run_code = 0
    a_matrix = torch.randn(2, 3)
    dim0 = 4
    dim1 = 3
    tile_matrix = torch.tile(a_matrix, dims=(dim0, dim1))
    print(f"a_matrix.shape=\n{a_matrix.shape}")
    print(f"tile_matrix.shape=\n{tile_matrix.shape}")
    print(f"a_matrix=\n{a_matrix}")
    print(f"tile_matrix=\n{tile_matrix}")
    my_one = torch.zeros(2 * dim0, 2)
    my_one[0::2, 0] = 1
    my_one[1::2, 1] = 1
    print(f"my_one=\n{my_one}")
    a_one = torch.ones(2).reshape(-1, 1)
    a_row = torch.eye(2)
    a_kron = torch.kron(a_one, a_row)
    print(f"a_kron=\n{a_kron}")
    a_co_one = torch.ones(3).reshape(1, -1)
    a_column = torch.eye(3)
    b_kron = torch.kron(a_co_one, a_column)
    print(f"b_kron=\n{b_kron}")
    my_one_result = my_one @ a_matrix @ b_kron
    print(f"my_one_result=\n{my_one_result}")
    m_check_result = torch.allclose(my_one_result,tile_matrix)
    print(f"m_check_result={m_check_result}")
  • 结果:
python 复制代码
a_matrix.shape=
torch.Size([2, 3])
tile_matrix.shape=
torch.Size([8, 9])
a_matrix=
tensor([[0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886]])
tile_matrix=
tensor([[0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886]])
my_one=
tensor([[1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.]])
a_kron=
tensor([[1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.]])
b_kron=
tensor([[1., 0., 0., 1., 0., 0., 1., 0., 0.],
        [0., 1., 0., 0., 1., 0., 0., 1., 0.],
        [0., 0., 1., 0., 0., 1., 0., 0., 1.]])
my_one_result=
tensor([[0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886]])
m_check_result=True
相关推荐
东临碣石8230 分钟前
【重磅AI论文】DeepSeek-R1:通过强化学习激励大语言模型(LLMs)的推理能力
人工智能·深度学习·语言模型
点云SLAM1 小时前
CVPR 2024 人脸方向总汇(人脸识别、头像重建、人脸合成和3D头像等)
深度学习·计算机视觉·人脸识别·3d人脸·头像重建
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
ZzYH222 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
FL16238631293 小时前
汽车表面划痕刮伤检测数据集VOC+YOLO格式1221张1类别
深度学习·yolo·汽车
种花生的图图4 小时前
《边界感知的分而治之方法:基于扩散模型的无监督阴影去除解决方案》学习笔记
人工智能·笔记·深度学习·学习·机器学习
Francek Chen6 小时前
【深度学习基础】多层感知机 | 数值稳定性和模型初始化
人工智能·pytorch·深度学习·神经网络·参数初始化·梯度消失和爆炸
Francek Chen16 小时前
【深度学习基础】多层感知机 | 权重衰减
人工智能·pytorch·深度学习·神经网络·多层感知机·权重衰减
热爱编程的OP17 小时前
全连接神经网络(前馈神经网络)
人工智能·深度学习·神经网络
pchmi17 小时前
深度学习VS机器视觉
人工智能·深度学习·opencv·计算机视觉