torch.tile 手动实现 kron+矩阵乘法

文章目录

  • [1. tile](#1. tile)
  • [2. pytorch](#2. pytorch)

1. tile

torch.tile 是对矩阵进行指定维度的复制数据,为了实现矩阵复制,使用kron 算子将对角矩阵I 复制后形成基于行变换和列变换的矩阵

2. pytorch

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

torch.set_printoptions(precision=3, sci_mode=False)

if __name__ == "__main__":
    run_code = 0
    a_matrix = torch.randn(2, 3)
    dim0 = 4
    dim1 = 3
    tile_matrix = torch.tile(a_matrix, dims=(dim0, dim1))
    print(f"a_matrix.shape=\n{a_matrix.shape}")
    print(f"tile_matrix.shape=\n{tile_matrix.shape}")
    print(f"a_matrix=\n{a_matrix}")
    print(f"tile_matrix=\n{tile_matrix}")
    my_one = torch.zeros(2 * dim0, 2)
    my_one[0::2, 0] = 1
    my_one[1::2, 1] = 1
    print(f"my_one=\n{my_one}")
    a_one = torch.ones(2).reshape(-1, 1)
    a_row = torch.eye(2)
    a_kron = torch.kron(a_one, a_row)
    print(f"a_kron=\n{a_kron}")
    a_co_one = torch.ones(3).reshape(1, -1)
    a_column = torch.eye(3)
    b_kron = torch.kron(a_co_one, a_column)
    print(f"b_kron=\n{b_kron}")
    my_one_result = my_one @ a_matrix @ b_kron
    print(f"my_one_result=\n{my_one_result}")
    m_check_result = torch.allclose(my_one_result,tile_matrix)
    print(f"m_check_result={m_check_result}")
  • 结果:
python 复制代码
a_matrix.shape=
torch.Size([2, 3])
tile_matrix.shape=
torch.Size([8, 9])
a_matrix=
tensor([[0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886]])
tile_matrix=
tensor([[0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886]])
my_one=
tensor([[1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.]])
a_kron=
tensor([[1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.]])
b_kron=
tensor([[1., 0., 0., 1., 0., 0., 1., 0., 0.],
        [0., 1., 0., 0., 1., 0., 0., 1., 0.],
        [0., 0., 1., 0., 0., 1., 0., 0., 1.]])
my_one_result=
tensor([[0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886],
        [0.340, 0.766, 0.622, 0.340, 0.766, 0.622, 0.340, 0.766, 0.622],
        [0.366, 1.425, 0.886, 0.366, 1.425, 0.886, 0.366, 1.425, 0.886]])
m_check_result=True
相关推荐
Hcoco_me11 小时前
大模型面试题42:从小白视角递进讲解大模型训练的重计算
人工智能·rnn·深度学习·lstm·transformer
木头左12 小时前
深度学习驱动的指数期权定价与波动率建模技术实现
人工智能·深度学习
AI科技星12 小时前
统一场论变化的引力场产生电磁场推导与物理诠释
服务器·人工智能·科技·线性代数·算法·重构·生活
my烂笔头12 小时前
协方差矩阵计算
线性代数·矩阵
狮子座明仔12 小时前
DISCOG:知识图谱+LLM双引擎驱动的法律电子取证系统
人工智能·深度学习·知识图谱
传说故事12 小时前
【论文自动阅读】GR-Dexter Technical Report
深度学习·具身智能
Hcoco_me12 小时前
大模型面试题45:从小白视角递进讲解DeepSeek V3的MLA机制
人工智能·深度学习·lstm·transformer·word2vec
Hcoco_me12 小时前
大模型面试题43:从小白视角递进讲解大模型训练的梯度累加策略
人工智能·深度学习·学习·自然语言处理·transformer
小毅&Nora12 小时前
【人工智能】【深度学习】11 生成对抗网络(GAN)补遗:从理论推导到实战优化的深度解析
人工智能·深度学习·生成对抗网络
weixin_3954489112 小时前
loaderr
人工智能·深度学习·机器学习