PaddleSeg 从配置文件和模型 URL 自动化运行预测任务

python 复制代码
git clone  https://github.com/PaddlePaddle/PaddleSeg.git
python 复制代码
# 在ipynb里面运行
cd PaddleSeg
python 复制代码
import sys
sys.path.append('/home/aistudio/work/PaddleSeg')
python 复制代码
import os

# 配置文件夹路径
folder_path = "/home/aistudio/work/PaddleSeg/configs"

# 遍历文件夹,寻找所有 .yml 文件并存储到字典中
# key 是文件名(不带扩展名),value 是文件的完整路径
yml_files = {}
for root, dirs, files in os.walk(folder_path):
    for file in files:
        if file.lower().endswith(".yml"):
            file_path = os.path.join(root, file)
            file_name_without_extension = os.path.splitext(file)[0]  # 获取文件名(不带扩展名)
            yml_files[file_name_without_extension] = file_path  # 保存文件路径
            print(file_path)  # 打印找到的配置文件路径

# 读取包含模型 URL 的文件
file_to_read = "/home/aistudio/work/PaddleSeg/voc/pascal_voc12_urls_extracted.txt"
url_lines = {}
if os.path.exists(file_to_read):
    with open(file_to_read, 'r') as f:
        lines = f.readlines()
        for line in lines:
            url = line.strip()  # 去除换行符和多余空格
            parsed_name = url.split("/")[-2]  # 提取 URL 中的模型名称部分
            url_lines[parsed_name] = url  # 保存模型名称与 URL 的映射
            print(url)  # 打印提取的 URL
else:
    print(f"File not found: {file_to_read}")  # 如果文件不存在,打印提示信息

# 拼接并运行预测命令
base_command = "python tools/predict.py --config {} --model_path {} --image_path /home/aistudio/data/data117064/voctestimg --save_dir {}"
for model_name, model_path in url_lines.items():
    if model_name in yml_files:  # 检查模型名称是否有对应的配置文件
        config_file = yml_files[model_name]  # 获取匹配的配置文件路径
        save_dir = f"output/{model_name}"  # 保存路径按照模型名称组织
        os.makedirs(save_dir, exist_ok=True)  # 确保保存目录存在
        command = base_command.format(config_file, model_path, save_dir)  # 填充命令模板
        print(f"Executing: {command}")  # 打印正在执行的命令
        os.system(command)  # 执行命令
    else:
        print(f"No matching config file found for model: {model_name}")  # 如果没有匹配的配置文件,打印提示信息
相关推荐
子洋1 分钟前
LLM 原理 - 输入预处理
前端·人工智能·后端
我很哇塞耶8 分钟前
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
人工智能·ai·大模型·训练
川石课堂软件测试9 分钟前
自动化测试的基本概念及常用框架
数据库·python·功能测试·测试工具·单元测试·自动化·流程图
小白狮ww23 分钟前
lammps 教程:npt 控温估计 FCC Cu 熔点
人工智能·深度学习·机器学习·分子动力学·lammps·npt·材料建模
TOYOAUTOMATON26 分钟前
自动化工业夹爪
大数据·人工智能·算法·目标检测·机器人
未来之窗软件服务28 分钟前
服务器运维(十七)web服务对比和选择——东方仙盟炼气期
运维·服务器·服务器运维·仙盟创梦ide·东方仙盟
智算菩萨40 分钟前
Pip与第三方库:一行命令安装 AI 能力
人工智能·pip
serve the people41 分钟前
TensorFlow 基础训练循环(简化版 + 补全代码)
人工智能·python·tensorflow
Slaughter信仰1 小时前
图解大模型_生成式AI原理与实战学习笔记(第四章)
人工智能·笔记·学习
shizhan_cloud1 小时前
IF 条件语句的知识与实践
linux·运维