Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战

前一篇文章,Tensor 基本操作1 | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

目录

Tensor 基本操作

torch.max

torch.max 实现降维运算,基于指定的 dim 选取子元素的最大值。

默认

复制代码
    a = torch.randn(1, 3)
    print(a)
    b = torch.max(a)
    print(b)

Result:

复制代码
tensor([[-0.5284, -1.5308, -0.2267]])
tensor(-0.2267)

指定维度

指定哪个维度,就是减去第几维:

假如有一个 Tensor Shape 是 AxBxCxD,那么有对应关系

A(dim0),B(dim1),C(dim2),D(dim3)。

假如沿着 dim = 0,则得到矩阵为 BxCxD,其中降维后的 D 中每个值,是 0 维 A 个原始元素最大的值。
假如沿着 dim = 1,则得到矩阵为 AxCxD,其中降维后的 D 中每个值,是 1 维 B 个原始元素最大的值。

复制代码
    a = torch.randn(4, 3, 2, 5)      # 声明 4x3x2x5 的 Tensor
    print(a)
    max, max_indices = torch.max(a, 1) # 沿着第 1 维运算,得到的 max 是一个新的 Tensor, shape(4x2x5)
                                       # 其中,新的 tensor 的第 2 维 有 5 个元素,每个元素是原来第 1 维的 3 个元素的对应位置的最大者
    print(max)
    print(max_indices)

运算过程:

运算的效果,就是将原来第 1 维的 三个 元素通过取最大值的方式消解了,剩下了 4x2x5 的新的 Tensor.

Detail result:

复制代码
tensor([[[[ 1.6156, -0.3533,  0.5970,  1.0218,  0.3952],   # 这是一个 4x3x2x5 的 Tensor
          [ 0.2581, -1.3161,  0.3243, -0.9350,  0.6976]],

         [[-0.6239, -0.8732, -0.2739,  1.3695,  0.9614],
          [ 3.0117, -2.3211,  2.2359, -1.5275,  1.0230]],

         [[ 0.2711, -0.5295, -0.9168, -0.9496, -0.5264],
          [-0.0418,  1.4757, -0.3033, -0.5069, -0.6909]]],


        [[[-0.3262,  1.0079, -0.2975, -0.9859,  1.6166],
          [ 1.2771, -0.0456,  0.1857,  0.3275,  0.4207]],

         [[ 0.2362, -0.0821, -0.0105,  1.7645,  0.0989],
          [-0.1281, -1.0425, -0.5537, -0.0339,  1.3466]],

         [[-1.3060,  1.0920, -0.9126, -0.3850, -0.7273],
          [-0.0519, -0.3566, -0.5489, -3.6990,  0.6110]]],


        [[[ 1.2422, -0.2393,  0.4786,  0.6107, -0.0252],
          [ 0.2563, -0.4030,  1.8649,  0.3462,  0.7197]],

         [[-0.6126,  0.7801, -0.6078,  0.1391, -0.8297],
          [-1.8600, -0.2814,  0.2408, -0.9058, -0.0186]],

         [[ 1.6242,  1.5925, -0.0591, -0.0107, -1.8332],
          [ 0.9812, -3.2381, -1.7055, -1.3484, -1.3409]]],


        [[[-0.3392, -0.4359, -0.0451,  2.4718,  1.9482],
          [ 0.6110, -0.5543,  0.3466,  0.4199, -0.0319]],

         [[-0.2322, -0.8355, -1.0138,  0.9620, -0.4311],
          [-0.7799,  0.8414,  0.9293, -0.0322,  0.1638]],

         [[ 0.6299,  0.7966,  1.8616, -1.8382, -0.1141],
          [ 1.2325, -0.0446, -0.7722,  1.2540, -1.8609]]]])
tensor([[[ 1.6156, -0.3533,  0.5970,  1.3695,  0.9614],     # 取 Max 之后得到的新的 Tensor
         [ 3.0117,  1.4757,  2.2359, -0.5069,  1.0230]],

        [[ 0.2362,  1.0920, -0.0105,  1.7645,  1.6166],
         [ 1.2771, -0.0456,  0.1857,  0.3275,  1.3466]],

        [[ 1.6242,  1.5925,  0.4786,  0.6107, -0.0252],
         [ 0.9812, -0.2814,  1.8649,  0.3462,  0.7197]],

        [[ 0.6299,  0.7966,  1.8616,  2.4718,  1.9482],
         [ 1.2325,  0.8414,  0.9293,  1.2540,  0.1638]]])
tensor([[[0, 0, 0, 1, 1],
         [1, 2, 1, 2, 1]],

        [[1, 2, 1, 1, 0],
         [0, 0, 0, 0, 1]],

        [[2, 2, 0, 0, 0],
         [2, 1, 0, 0, 0]],

        [[2, 2, 2, 0, 0],
         [2, 1, 1, 2, 1]]])
相关推荐
无代码专家3 小时前
低代码构建数据管理系统:选型逻辑与实践路径
人工智能·低代码
无代码专家3 小时前
低代码搭建项目管理平台:易用性导向的实践方案
人工智能·低代码
KKKlucifer3 小时前
AI赋能与全栈适配:安全运维新范式的演进与实践
人工智能·安全
许泽宇的技术分享3 小时前
当AI学会拍短剧:Huobao Drama全栈AI短剧生成平台深度解析
人工智能
爱喝可乐的老王3 小时前
机器学习监督学习模型--线性回归
人工智能·机器学习·线性回归
金融Tech趋势派3 小时前
2025企业微信私有化部署优秀服务商:微盛·企微管家方案解析
人工智能·企业微信·scrm
Gofarlic_oms13 小时前
跨国企业Cadence许可证全球统一管理方案
java·大数据·网络·人工智能·汽车
AAD555888993 小时前
牛肝菌目标检测:基于YOLOv8-CFPT-P2345模型的创新实现与应用_1
人工智能·yolo·目标检测
幂链iPaaS3 小时前
制造业/零售电商ERP和MES系统集成指南
大数据·人工智能
gorgeous(๑>؂<๑)3 小时前
【中国科学院光电研究所-张建林组-AAAI26】追踪不稳定目标:基于外观引导的运动建模在无人机拍摄视频中实现稳健的多目标跟踪
人工智能·机器学习·计算机视觉·目标跟踪·无人机