统计学中的样本&概率论中的样本

不知道当初谁想的把概率论和数理统计合并,作为一门课。这本身是可以合并,完整的一条线,看这里。但是,作为任课老师应该从整体上交代清楚,毕竟是两个学科,不同的学科合并必然会有各种不协调的问题。

举个最基本的名词冲突的例子。

统计学中的样本

在统计学中,样本是从总体(Population)中选取的一部分个体或观测值。它用来代表整个总体,并用于估计总体的特征或参数。例如,如果我们想了解一个城市居民的平均收入,我们可能会随机抽取一部分居民进行调查,这部分被抽取的居民的数据就是样本。

概率论中的样本

在概率论中,"样本"指的是样本空间中的一个元素。样本空间 S S S是所有可能试验结果的集合。每个元素 e e e是样本空间中的一个基本事件。

  • 样本空间 S S S:是所有可能试验结果的集合。
  • 样本 e e e:是样本空间中的一个特定元素。
  • 随机变量 X X X:是一个定义在样本空间 S S S上的实值函数,即对于样本空间中的每一个元素 e e e,随机变量 X X X会给出一个实数值 X ( e ) X(e) X(e)。

示例

假设我们有一个抛硬币的随机试验:

  • 样本空间 S = { H , T } S = \{H, T\} S={H,T},其中 H H H表示正面, T T T表示反面。
  • 如果我们定义一个随机变量 X X X,表示抛硬币的结果,那么 X ( H ) = 1 X(H) = 1 X(H)=1, X ( T ) = 0 X(T) = 0 X(T)=0。

在这个例子中:

  • 样本空间 S S S包含两个元素: H H H和 T T T。
  • 每个元素 e e e(比如 H H H或 T T T)都是一个样本。
  • 随机变量 X X X对每个样本 e e e分配一个数值。

总结

  • 统计学中的样本:是从总体中抽取的一部分观测值,用于推断总体的特征。
  • 概率论中的样本:是样本空间中的一个元素,代表一个基本事件。

凡是只讲怎么代入公式计算,没有解释,没有剖析,不讲整个知识体系以及逻辑关系,那样的概率老师都应该回家卖红薯。

相关推荐
natide2 天前
表示/嵌入差异-4-闵可夫斯基距离(Minkowski Distance-曼哈顿距离-欧氏距离-切比雪夫距离
人工智能·深度学习·算法·机器学习·自然语言处理·概率论
忧郁奔向冷的天6 天前
泊松分布与指数分布以及一道贝叶斯推断例题
概率论
EniacCheng7 天前
贝叶斯定理
人工智能·机器学习·概率论
EniacCheng7 天前
二项分布和泊松分布
概率论·泊松分布·二项分布
byzh_rc8 天前
[模式识别-从入门到入土] 组合分类器
人工智能·算法·机器学习·支持向量机·概率论
牧歌悠悠9 天前
【Random Matrices】第一章-随机矩阵入门
线性代数·数学·概率论·随机矩阵·高维概率
缘友一世11 天前
现代密码学【3】之密码学形式化分析与可证明安全基础
安全·密码学·概率论
byzh_rc11 天前
[模式识别-从入门到入土] 拓展-EM算法
算法·机器学习·概率论
无水先生12 天前
随机变量在代数运算中的误差传播(2/2)
概率论·统计学
图像生成小菜鸟12 天前
Score Based diffusion model 数学推导
算法·机器学习·概率论