统计学中的样本&概率论中的样本

不知道当初谁想的把概率论和数理统计合并,作为一门课。这本身是可以合并,完整的一条线,看这里。但是,作为任课老师应该从整体上交代清楚,毕竟是两个学科,不同的学科合并必然会有各种不协调的问题。

举个最基本的名词冲突的例子。

统计学中的样本

在统计学中,样本是从总体(Population)中选取的一部分个体或观测值。它用来代表整个总体,并用于估计总体的特征或参数。例如,如果我们想了解一个城市居民的平均收入,我们可能会随机抽取一部分居民进行调查,这部分被抽取的居民的数据就是样本。

概率论中的样本

在概率论中,"样本"指的是样本空间中的一个元素。样本空间 S S S是所有可能试验结果的集合。每个元素 e e e是样本空间中的一个基本事件。

  • 样本空间 S S S:是所有可能试验结果的集合。
  • 样本 e e e:是样本空间中的一个特定元素。
  • 随机变量 X X X:是一个定义在样本空间 S S S上的实值函数,即对于样本空间中的每一个元素 e e e,随机变量 X X X会给出一个实数值 X ( e ) X(e) X(e)。

示例

假设我们有一个抛硬币的随机试验:

  • 样本空间 S = { H , T } S = \{H, T\} S={H,T},其中 H H H表示正面, T T T表示反面。
  • 如果我们定义一个随机变量 X X X,表示抛硬币的结果,那么 X ( H ) = 1 X(H) = 1 X(H)=1, X ( T ) = 0 X(T) = 0 X(T)=0。

在这个例子中:

  • 样本空间 S S S包含两个元素: H H H和 T T T。
  • 每个元素 e e e(比如 H H H或 T T T)都是一个样本。
  • 随机变量 X X X对每个样本 e e e分配一个数值。

总结

  • 统计学中的样本:是从总体中抽取的一部分观测值,用于推断总体的特征。
  • 概率论中的样本:是样本空间中的一个元素,代表一个基本事件。

凡是只讲怎么代入公式计算,没有解释,没有剖析,不讲整个知识体系以及逻辑关系,那样的概率老师都应该回家卖红薯。

相关推荐
AI科技星1 天前
统一场论理论下理解物体在不同运动状态的本质
人工智能·线性代数·算法·机器学习·概率论
大江东去浪淘尽千古风流人物1 天前
【Embodied】具身智能基础模型发展
人工智能·机器学习·3d·机器人·概率论
木非哲2 天前
AB实验的关键认知(一)正交实验与互斥实验
概率论·abtest
Smilecoc3 天前
求极限中等价无穷小量的替换的理解
线性代数·概率论
jllllyuz4 天前
基于子集模拟的系统与静态可靠性分析及Matlab优化算法实现
算法·matlab·概率论
木非哲4 天前
AB实验的统计学内核(八):方差陷阱——从自由度到Delta Method
概率论·abtest
木非哲4 天前
AB实验的统计学内核(七):统计显著性 vs 业务显著性
概率论·abtest
Zevalin爱灰灰4 天前
概率论与数理统计 第二章——随机变量及其分布
概率论
Zevalin爱灰灰4 天前
概率论与数理统计 第一章——随机事件与概率
概率论
无水先生4 天前
高级概率知识1:大数定律
概率论·统计学