统计学中的样本&概率论中的样本

不知道当初谁想的把概率论和数理统计合并,作为一门课。这本身是可以合并,完整的一条线,看这里。但是,作为任课老师应该从整体上交代清楚,毕竟是两个学科,不同的学科合并必然会有各种不协调的问题。

举个最基本的名词冲突的例子。

统计学中的样本

在统计学中,样本是从总体(Population)中选取的一部分个体或观测值。它用来代表整个总体,并用于估计总体的特征或参数。例如,如果我们想了解一个城市居民的平均收入,我们可能会随机抽取一部分居民进行调查,这部分被抽取的居民的数据就是样本。

概率论中的样本

在概率论中,"样本"指的是样本空间中的一个元素。样本空间 S S S是所有可能试验结果的集合。每个元素 e e e是样本空间中的一个基本事件。

  • 样本空间 S S S:是所有可能试验结果的集合。
  • 样本 e e e:是样本空间中的一个特定元素。
  • 随机变量 X X X:是一个定义在样本空间 S S S上的实值函数,即对于样本空间中的每一个元素 e e e,随机变量 X X X会给出一个实数值 X ( e ) X(e) X(e)。

示例

假设我们有一个抛硬币的随机试验:

  • 样本空间 S = { H , T } S = \{H, T\} S={H,T},其中 H H H表示正面, T T T表示反面。
  • 如果我们定义一个随机变量 X X X,表示抛硬币的结果,那么 X ( H ) = 1 X(H) = 1 X(H)=1, X ( T ) = 0 X(T) = 0 X(T)=0。

在这个例子中:

  • 样本空间 S S S包含两个元素: H H H和 T T T。
  • 每个元素 e e e(比如 H H H或 T T T)都是一个样本。
  • 随机变量 X X X对每个样本 e e e分配一个数值。

总结

  • 统计学中的样本:是从总体中抽取的一部分观测值,用于推断总体的特征。
  • 概率论中的样本:是样本空间中的一个元素,代表一个基本事件。

凡是只讲怎么代入公式计算,没有解释,没有剖析,不讲整个知识体系以及逻辑关系,那样的概率老师都应该回家卖红薯。

相关推荐
HappyAcmen7 小时前
1.3 古典概型和几何概型
笔记·概率论·学习方法
程序员老周6669 小时前
4.大语言模型预备数学知识
人工智能·神经网络·线性代数·自然语言处理·大语言模型·概率论·数学基础
pen-ai1 天前
【统计方法】蒙特卡洛
人工智能·机器学习·概率论
phoenix@Capricornus3 天前
极大似然估计例题——正态分布的极大似然估计
线性代数·概率论
VU-zFaith8703 天前
C++概率论算法详解:理论基础与实践应用
c++·算法·概率论
zyq~4 天前
【课堂笔记】标签传播算法Label Propagation Algorithm(LPA)
人工智能·笔记·算法·机器学习·概率论·lpa·半监督学习
小于小于大橙子7 天前
强化学习的前世今生(五)— SAC算法
人工智能·算法·ai·自动驾驶·概率论·强化学习
zyq~8 天前
【课堂笔记】EM算法
人工智能·笔记·算法·机器学习·概率论·gmm·em算法
无水先生12 天前
【概率论基本概念01】点估计
概率论
拾忆-eleven13 天前
NLP学习路线图(二): 概率论与统计学(贝叶斯定理、概率分布等)
学习·自然语言处理·概率论