统计学中的样本&概率论中的样本

不知道当初谁想的把概率论和数理统计合并,作为一门课。这本身是可以合并,完整的一条线,看这里。但是,作为任课老师应该从整体上交代清楚,毕竟是两个学科,不同的学科合并必然会有各种不协调的问题。

举个最基本的名词冲突的例子。

统计学中的样本

在统计学中,样本是从总体(Population)中选取的一部分个体或观测值。它用来代表整个总体,并用于估计总体的特征或参数。例如,如果我们想了解一个城市居民的平均收入,我们可能会随机抽取一部分居民进行调查,这部分被抽取的居民的数据就是样本。

概率论中的样本

在概率论中,"样本"指的是样本空间中的一个元素。样本空间 S S S是所有可能试验结果的集合。每个元素 e e e是样本空间中的一个基本事件。

  • 样本空间 S S S:是所有可能试验结果的集合。
  • 样本 e e e:是样本空间中的一个特定元素。
  • 随机变量 X X X:是一个定义在样本空间 S S S上的实值函数,即对于样本空间中的每一个元素 e e e,随机变量 X X X会给出一个实数值 X ( e ) X(e) X(e)。

示例

假设我们有一个抛硬币的随机试验:

  • 样本空间 S = { H , T } S = \{H, T\} S={H,T},其中 H H H表示正面, T T T表示反面。
  • 如果我们定义一个随机变量 X X X,表示抛硬币的结果,那么 X ( H ) = 1 X(H) = 1 X(H)=1, X ( T ) = 0 X(T) = 0 X(T)=0。

在这个例子中:

  • 样本空间 S S S包含两个元素: H H H和 T T T。
  • 每个元素 e e e(比如 H H H或 T T T)都是一个样本。
  • 随机变量 X X X对每个样本 e e e分配一个数值。

总结

  • 统计学中的样本:是从总体中抽取的一部分观测值,用于推断总体的特征。
  • 概率论中的样本:是样本空间中的一个元素,代表一个基本事件。

凡是只讲怎么代入公式计算,没有解释,没有剖析,不讲整个知识体系以及逻辑关系,那样的概率老师都应该回家卖红薯。

相关推荐
FF-Studio2 天前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
如果你想拥有什么先让自己配得上拥有12 天前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论
云博客-资源宝13 天前
Excel函数大全
机器学习·excel·概率论
爱学习的capoo15 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
TomcatLikeYou16 天前
概率论中的基本定义(事件,期望,信息量,香农熵等)
深度学习·机器学习·概率论
phoenix@Capricornus18 天前
期望最大化(EM)算法的推导——Q函数
算法·机器学习·概率论
Algo-hx19 天前
概率论的基本概念:开启不确定性世界的数学之旅
概率论
Algo-hx19 天前
随机变量及其分布:概率论的量化核心
概率论
小钻风336621 天前
概率论几大分布的由来
概率论
猿饵块21 天前
slam--高斯分布
概率论