关于DNN检测中替换caff用Tensorflow的注意事项

首先确保计算机中有python标准库,之后在环境变量中加入python的路径,这样在管理员的cmd中才不会出现tf_text_graph_ssd.py无法编译的情况,之后要在python的环境下添加opencv,不然会导致无法生成pbtxt文件,从而std::string model_text_file = "C:/Users/ss/Desktop/bbb/ssd_mobilenet_v2_coco_2018_03_29/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb";

std::string modelFile = "C:/Users/ss/Desktop/bbb/ssd_mobilenet_v2_coco_2018_03_29/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pbtxt";无法读取位置。值得注意的是Net net = readNetFromTensorflow(model_text_file,modelFile);的model的位置和CAFF是相反的,Mat blobImage = blobFromImage(frame, 1.0,

Size(300, 300),

Scalar(127.5, 127.5, 127.5), true, false);要跟及models的模板来写。最后Mat detection = net.forward("detection_out");要将caff的命名层删掉。

1.python标准库

2.python的环境下添加opencv

3.tf_text_graph_ssd.py

4.input C:\Users\ss\Desktop\bbb\ssd_mobilenet_v2_coco_2018_03_29\ssd_mobilenet_v2_coco_2018_03_29\frozen_inference_graph.pb --out C:\Users\ss\Desktop\bbb\ssd_mobilenet_v2_coco_2018_03_29\ssd_mobilenet_v2_coco_2018_03_29\frozen_inference_graph.pbtxt --config C:\Users\ss\Desktop\bbb\ssd_mobilenet_v2_coco_2018_03_29\ssd_mobilenet_v2_coco_2018_03_29\pipeline.config

5.readNetFromTensorflow(model_text_file,modelFile)

6.格式

7.net.forward("detection_out")

相关推荐
躺柒15 小时前
读人工智能全球格局:未来趋势与中国位势06人类的未来(下)
大数据·人工智能·算法·ai·智能
gorgeous(๑>؂<๑)16 小时前
【ICLR26-Oral Paper-Meta】DepthLM:基于视觉语言模型的度量深度
人工智能·计算机视觉·语言模型·自然语言处理
Dev7z16 小时前
当AI学会“听诊”:心肺听诊分析系统,正在悄悄改变医疗
人工智能
池央16 小时前
atvoss:AI 处理器上的智能语音与多媒体解决方案,赋能高效实时交互
人工智能·交互
码云数智-大飞16 小时前
小程序制作平台有哪些?SaaS小程序制作平台对比评测
大数据·人工智能
新缸中之脑17 小时前
Arduino AI手势识别系统
人工智能
码农小韩17 小时前
AIAgent应用开发——DeepSeek分析(二)
人工智能·python·深度学习·agent·强化学习·deepseek
ctrigger17 小时前
家和万事兴
大数据·人工智能·生活
Bill Adams17 小时前
深度解析 WebMCP:让网页成为 AI 智能体的工具库
人工智能·智能体·mcp
新缸中之脑17 小时前
StrongDM:软件黑灯工厂
人工智能