Dijkstra算法解析

Dijkstra算法,用于求解图中从一个起点到其他所有节点的最短路径。解决单源最短路径问题的有效方法。

条件

有向

带权路径

时间复杂度 O(n平方)

方法步骤

1 把图上的点分为两个集合 要求的起点 和除了起点之外的点 。能直达的写上权值 不能直达的写上无穷 自己到自己的距离是0

2 在除起点以外的中找权值最小的顶点,这个顶点加入起点所在的集合。由于新顶点的并入,可以把新顶点作为中转点,再重新计算起点到所有除已经并入顶点的距离,找最小的继续并入,直到所有顶点并入起点所在的集合。

以下是对代码的详细解析和注释:

代码解析

全局变量定义
#define N 1005 // 定义最大顶点数为1005
int n, m; // n表示顶点数,m表示边数
bool str[N]; // 用于标记是否已确定最短路径
int dis[N]; // 存储从起始点到各个顶点的最短距离
int g[N][N]; // 邻接矩阵,存储图的结构
  • N:定义图中最大顶点数为1005。

  • nm:分别表示图中的顶点数和边数。

  • str:布尔数组,用于标记某个顶点是否已经确定了最短路径。

  • dis:数组,存储从起点到每个顶点的最短距离。

  • g:邻接矩阵,g[i][j] 表示从顶点 i 到顶点 j 的距离。

Dijkstra算法实现
void dijkstra() {
    // 初始化dis数组为一个很大的值(这里选择0x3f3f3f3f)
    memset(dis, 0x3f3f3f3f, sizeof(dis));
    
    // 起始点到自身的距离为0
    dis[1] = 0;
    
    for (int i = 1; i <= n; ++i) {
        int temp = -1; // 选择未确定的顶点
        
        // 寻找当前未确定的最小距离顶点
        for (int j = 1; j <= n; ++j)
            if (!str[j] && (temp == -1 || dis[j] < dis[temp]))
                temp = j;
        
        // 更新与该顶点相邻的其他顶点的距离
        for (int j = 1; j <= n; ++j)
            dis[j] = min(dis[j], dis[temp] + g[temp][j]);
        
        // 标记该顶点已经确定了最短路径
        str[temp] = true;
    }
    
    // 输出结果
    for (int i = 1; i <= n; ++i) {
        if (dis[i] == 0x3f3f3f3f)
            cout << "-1" << " "; // 如果没有到该顶点的路径则输出-1
        else
            cout << dis[i] << " "; // 否则输出最短距离
    }
}
  1. 初始化

    • memset(dis, 0x3f3f3f3f, sizeof(dis));:将 dis 数组初始化为一个很大的值(0x3f3f3f3f),表示初始时从起点到其他顶点的距离是无穷大。

    • dis[1] = 0;:将起点到自身的距离设置为0。

  2. 主循环

    • for (int i = 1; i <= n; ++i):循环 n 次,每次找到一个未确定最短路径的顶点。

    • int temp = -1;:初始化当前未确定的最短距离顶点为 -1。

    • for (int j = 1; j <= n; ++j):遍历所有顶点,找到未确定最短路径的顶点中距离最短的顶点 temp

      • if (!str[j] && (temp == -1 || dis[j] < dis[temp])):如果顶点 j 未确定最短路径且距离更短,则更新 temp
    • for (int j = 1; j <= n; ++j):更新与顶点 temp 相邻的其他顶点的距离。

      • dis[j] = min(dis[j], dis[temp] + g[temp][j]);:如果通过 temp 到达 j 的距离更短,则更新 dis[j]
    • str[temp] = true;:标记顶点 temp 已经确定了最短路径。

  3. 结果输出

    • 遍历 dis 数组,输出从起点到每个顶点的最短距离。

    • 如果 dis[i] 仍然是 0x3f3f3f3f,表示没有路径到达顶点 i,输出 -1

    • 否则输出 dis[i]

主函数
int main() {
    // 初始化邻接矩阵g为一个很大的值
    memset(g, 0x3f3f3f3f, sizeof(g));
    
    // 输入顶点数n和边数m
    cin >> n >> m;
    
    while (m--) { // 处理每一条边的输入
        int x, y, z;
        cin >> x >> y >> z;
        // 更新邻接矩阵g中的权值
        g[x][y] = min(g[x][y], z);
    }
    
    // 调用dijkstra函数求解
    dijkstra();
    
    return 0;
}
  1. 初始化邻接矩阵

    • memset(g, 0x3f3f3f3f, sizeof(g));:将邻接矩阵 g 初始化为一个很大的值(0x3f3f3f3f),表示初始时图中没有边。
  2. 输入图的边

    • cin >> n >> m;:读取顶点数 n 和边数 m

    • while (m--):循环 m 次,读取每一条边的信息。

      • cin >> x >> y >> z;:读取边的起点 x、终点 y 和权重 z

      • g[x][y] = min(g[x][y], z);:更新邻接矩阵 g 中的权值,如果有多条边连接同一对顶点,只保留权重最小的那条边。

  3. 调用Dijkstra算法

    • dijkstra();:调用 dijkstra 函数求解最短路径。
  4. 输出结果

    • dijkstra 函数会输出从起点到每个顶点的最短距离。

示例输入和输出

示例输入
5 7
1 2 4
1 3 3
2 4 2
3 2 1
3 4 5
4 5 1
2 5 7
示例输出

0 2 3 4 5

解释
  • 顶点 1 到顶点 2 的最短距离为 2(1 -> 3 -> 2)。

  • 顶点 1 到顶点 3 的最短距离为 3(1 -> 3)。

  • 顶点 1 到顶点 4 的最短距离为 4(1 -> 3 -> 2 -> 4)。

  • 顶点 1 到顶点 5 的最短距离为 5(1 -> 3 -> 2 -> 4 -> 5)。

关键点总结

  1. 邻接矩阵 :使用二维数组 g[N][N] 表示图的结构,g[i][j] 表示从顶点 i 到顶点 j 的距离。

  2. 选择最短距离顶点:通过遍历所有顶点,找到未确定最短路径的顶点中距离最短的顶点。

  3. 更新邻接顶点的距离:通过当前顶点更新其邻接顶点的距离。

  4. 标记顶点 :使用布尔数组 str 标记顶点是否已经确定了最短路径。

Dijkstra算法详细步骤解析

1. 初始化

在算法开始之前,需要进行以下初始化操作:

  1. 初始化距离数组 dis

    • dis 数组中的所有元素初始化为一个很大的值(如 0x3f3f3f3f),表示从起点到其他顶点的距离初始为无穷大。

    • 将起点的距离设置为 0,即 dis[start] = 0

  2. 初始化访问标记数组 str

    • str 数组中的所有元素初始化为 false,表示所有顶点初始时都未被访问过。
  3. 初始化邻接矩阵 g

    • 将邻接矩阵 g 中的所有元素初始化为一个很大的值(如 0x3f3f3f3f),表示初始时图中没有边。
2. 主循环

Dijkstra算法的核心是一个主循环,该循环执行 n 次(n 为顶点数),每次找到一个未访问的最短距离顶点,并更新其邻接顶点的距离。

  1. 选择未访问的最短距离顶点

    • 遍历所有顶点,找到未访问的顶点中距离最短的顶点 u

    • 如果所有顶点都已被访问过,或者没有找到未访问的顶点,则退出循环。

  2. 更新邻接顶点的距离

    • 遍历顶点 u 的所有邻接顶点 v,如果通过 u 到达 v 的距离更短,则更新 dis[v]

    • 具体来说,如果 dis[u] + g[u][v] < dis[v],则更新 dis[v] = dis[u] + g[u][v]

  3. 标记顶点为已访问

    • 将顶点 u 标记为已访问,即 str[u] = true,避免重复处理。
3. 结果输出

在主循环结束后,dis 数组中存储了从起点到每个顶点的最短距离。遍历 dis 数组,输出结果:

  • 如果 dis[i] 仍然是初始的大值(如 0x3f3f3f3f),表示没有路径到达顶点 i,输出 -1

  • 否则,输出 dis[i],表示从起点到顶点 i 的最短距离。

示例执行过程

假设图的结构如下:

  • 顶点数 n = 5

  • 边数 m = 7

  • 边的权重如下:

    • 1 -> 2: 4

    • 1 -> 3: 3

    • 2 -> 4: 2

    • 3 -> 2: 1

    • 3 -> 4: 5

    • 4 -> 5: 1

    • 2 -> 5: 7

初始化
  • dis 数组:[0, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f]

  • str 数组:[false, false, false, false, false]

  • g 邻接矩阵:

    [
      [0x3f3f3f3f, 4, 3, 0x3f3f3f3f, 0x3f3f3f3f],
      [0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 2, 0x3f3f3f3f],
      [0x3f3f3f3f, 1, 0x3f3f3f3f, 5, 0x3f3f3f3f],
      [0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 1],
      [0x3f3f3f3f, 7, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f]
    ]
    
第1次循环
  1. 选择未访问的最短距离顶点

    • 遍历所有顶点,找到未访问的顶点中距离最短的顶点 u = 1(起点)。
  2. 更新邻接顶点的距离

    • 遍历顶点 1 的邻接顶点 23

      • dis[2] = min(dis[2], dis[1] + g[1][2]) = min(0x3f3f3f3f, 0 + 4) = 4

      • dis[3] = min(dis[3], dis[1] + g[1][3]) = min(0x3f3f3f3f, 0 + 3) = 3

  3. 标记顶点为已访问

    • str[1] = true
第2次循环
  1. 选择未访问的最短距离顶点

    • 遍历所有顶点,找到未访问的顶点中距离最短的顶点 u = 3dis[3] = 3)。
  2. 更新邻接顶点的距离

    • 遍历顶点 3 的邻接顶点 24

      • dis[2] = min(dis[2], dis[3] + g[3][2]) = min(4, 3 + 1) = 4

      • dis[4] = min(dis[4], dis[3] + g[3][4]) = min(0x3f3f3f3f, 3 + 5) = 8

  3. 标记顶点为已访问

    • str[3] = true
第3次循环
  1. 选择未访问的最短距离顶点

    • 遍历所有顶点,找到未访问的顶点中距离最短的顶点 u = 2dis[2] = 4)。
  2. 更新邻接顶点的距离

    • 遍历顶点 2 的邻接顶点 45

      • dis[4] = min(dis[4], dis[2] + g[2][4]) = min(8, 4 + 2) = 6

      • dis[5] = min(dis[5], dis[2] + g[2][5]) = min(0x3f3f3f3f, 4 + 7) = 11

  3. 标记顶点为已访问

    • str[2] = true
第4次循环
  1. 选择未访问的最短距离顶点

    • 遍历所有顶点,找到未访问的顶点中距离最短的顶点 u = 4dis[4] = 6)。
  2. 更新邻接顶点的距离

    • 遍历顶点 4 的邻接顶点 5

      • dis[5] = min(dis[5], dis[4] + g[4][5]) = min(11, 6 + 1) = 7
  3. 标记顶点为已访问

    • str[4] = true
第5次循环
  1. 选择未访问的最短距离顶点

    • 遍历所有顶点,找到未访问的顶点中距离最短的顶点 u = 5dis[5] = 7)。
  2. 更新邻接顶点的距离

    • 顶点 5 没有邻接顶点,无需更新。
  3. 标记顶点为已访问

    • str[5] = true
结果输出

遍历 dis 数组,输出从起点到每个顶点的最短距离:

  • dis[1] = 0

  • dis[2] = 4

  • dis[3] = 3

  • dis[4] = 6

  • dis[5] = 7

关键点总结

  1. 选择未访问的最短距离顶点

    • 每次选择未访问的顶点中距离最短的顶点,确保每一步都选择当前最优的顶点进行处理。
  2. 更新邻接顶点的距离

    • 通过当前顶点更新其邻接顶点的距离,确保每一步都更新到最新的最短距离。
  3. 标记顶点为已访问

    • 避免重复处理已访问的顶点,提高算法的效率。
  4. 结果输出

    • 最终输出从起点到每个顶点的最短距离,如果没有路径到达某个顶点,则输出 -1
相关推荐
查理零世12 分钟前
【算法】回溯算法专题① ——子集型回溯 python
python·算法
labmem11 小时前
Leetcode:541
算法·leetcode·职场和发展
某个默默无闻奋斗的人1 小时前
深度优先搜索(DFS)
算法·深度优先
圆圆滚滚小企鹅。1 小时前
刷题记录 HOT100回溯算法-6:79. 单词搜索
笔记·python·算法·leetcode
逊嘘3 小时前
【Java数据结构】了解排序相关算法
数据结构·算法·排序算法
_周游3 小时前
【数据结构】_链表经典算法OJ(力扣/牛客第二弹)
数据结构·算法·链表
LUCIAZZZ4 小时前
Hot100之双指针
java·数据结构·算法
励志成为美貌才华为一体的女子4 小时前
python算法和数据结构刷题[3]:哈希表、滑动窗口、双指针、回溯算法、贪心算法
数据结构·算法·散列表
圆圆滚滚小企鹅。4 小时前
刷题记录 贪心算法-3:376. 摆动序列
笔记·python·算法·leetcode·贪心算法