机器学习之数学基础:线性代数、微积分、概率论 | PyTorch 深度学习实战

前一篇文章,使用线性回归模型逼近目标模型 | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

本篇文章内容来自于 强化学习必修课:引领人工智能新时代【梗直哥瞿炜】

线性代数、微积分、概率论

线性代数

单位向量

向量的内积

向量的外积

矩阵的乘法

矩阵的内积和哈达玛积(Hadamard product)

矩阵乘法的性质

微积分

微分

微分是指函数的局部变化的一种线性描述,自变量的微分记作 d x dx dx ,函数 y = f ( x ) y=f(x) y=f(x) 的微分记作 d y = d f ( x ) = f ′ ( x ) d x dy=df(x)=f'(x)dx dy=df(x)=f′(x)dx

导数是微分的比值 f ′ ( x ) = d f ( x ) d x f'(x)=\frac{df(x)}{dx} f′(x)=dxdf(x),导数表示变化率,微分表示变化量。

偏导数

  • 偏导数指的是多元函数在某一点处关于某一变量的导数
  • 通常用符号 ∂ f ( x , y ) ∂ x \frac{\partial f(x,y)}{\partial x} ∂x∂f(x,y) 来表示多元函数 z = f(x,y) 关于 x 的偏导数

梯度

梯度下降算法的一个主要问题,就是没有考虑到变量和变量之间的相互影响,而是每维依靠自己的变化去调节。

链式法则

概率论

事件

随机变量与概率分布

概率密度

联合概率和条件概率

贝叶斯定理

极大似然估计

理解极大似然估计,是重点。

相关推荐
fsnine14 分钟前
深度学习——残差神经网路
人工智能·深度学习
荼蘼24 分钟前
迁移学习实战:基于 ResNet18 的食物分类
机器学习·分类·迁移学习
和鲸社区44 分钟前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
THMAIL1 小时前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
fFee-ops1 小时前
73. 矩阵置零
线性代数·矩阵
Gyoku Mint1 小时前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
悠哉悠哉愿意2 小时前
【数学建模学习笔记】机器学习分类:随机森林分类
学习·机器学习·数学建模
玉木子2 小时前
机器学习(七)决策树-分类
决策树·机器学习·分类
悠哉悠哉愿意2 小时前
【数学建模学习笔记】机器学习分类:KNN分类
学习·机器学习·数学建模
ningmengjing_2 小时前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习