为什么平方数列求和是三次多项式?

当我们推导数列求和公式时,有时候可能会先假设其形式是一个多项式,并根据数列的增长速度确定多项式的次数。对于平方数列的求和问题
S 2 ( n ) = 1 2 + 2 2 + ⋯ + n 2 S_2(n)=1^2+2^2+\dots+n^2 S2(n)=12+22+⋯+n2

我们假设它是一个三次多项式,为什么?


从增长速度角度大致进行判断

1. 单项平方数的增长速度

平方数列中的每一项为 k 2 k^2 k2,随着 k k k的增加, k 2 k^2 k2的增长速度是二次的。例如:
1 2 = 1 , 2 2 = 4 , 3 2 = 9 , 4 2 = 16 , ... 1^2=1,\quad2^2=4,\quad3^2=9,\quad4^2=16,\dots 12=1,22=4,32=9,42=16,...

2. 求和后的增长速度

如果我们对平方数列进行求和 S 2 ( n ) = 1 2 + 2 2 + ⋯ + n 2 S_2(n)=1^2+2^2+\dots+n^2 S2(n)=12+22+⋯+n2,那么整个和的增长速度将比单个平方项更高。

  • 当 n n n较大时, S 2 ( n ) S_2(n) S2(n)的主要贡献来自于最大的几项(即接近 n 2 n^2 n2的部分,有点计算时间复杂度的意思了)。
  • 因此, S 2 ( n ) S_2(n) S2(n)的增长速度大致与 n 3 n^3 n3成正比。

从空间角度来理解一下,将平方数列的每一项看作一个面积(是二维的),那么它们的累积和可以近似看作一个体积(三维的)。因此, S 2 ( n ) S_2(n) S2(n)的增长速度应该是三次的。但是这有点像是个猜想,不能完全论证其正确性。


差分法验证上面猜想的正确性

多项式的次数与差分的关系:对于一个 m m m 次多项式 P ( n ) P(n) P(n) ,其 m m m阶差分是一个常数,而 m + 1 m+1 m+1 阶差分及更高阶差分均为零。因此,通过差分法可以确定多项式的次数。

1. 差分定义

设 f ( n ) f(n) f(n)是一个函数,其一阶差分为:
Δ f ( n ) = f ( n + 1 ) − f ( n ) \Delta f(n)=f(n+1)-f(n) Δf(n)=f(n+1)−f(n)

二阶差分为:
Δ 2 f ( n ) = Δ ( Δ f ( n ) ) = Δ f ( n + 1 ) − Δ f ( n ) \Delta^2f(n)=\Delta(\Delta f(n))=\Delta f(n+1)-\Delta f(n) Δ2f(n)=Δ(Δf(n))=Δf(n+1)−Δf(n)

依此类推计算高阶差分。

我们知道 S 2 ( n ) = 1 2 + 2 2 + ⋯ + n 2 S_2(n)=1^2+2^2+\dots+n^2 S2(n)=12+22+⋯+n2,因此:
S 2 ( n + 1 ) = S 2 ( n ) + ( n + 1 ) 2 S_2(n+1)=S_2(n)+(n+1)^2 S2(n+1)=S2(n)+(n+1)2

由此可得一阶差分为:
Δ S 2 ( n ) = S 2 ( n + 1 ) − S 2 ( n ) = ( n + 1 ) 2 \Delta S_2(n)=S_2(n+1)-S_2(n)=(n+1)^2 ΔS2(n)=S2(n+1)−S2(n)=(n+1)2

二阶差分:
Δ 2 S 2 ( n ) = Δ ( Δ S 2 ( n ) ) = ( n + 2 ) 2 − ( n + 1 ) 2 = 2 n + 3 \Delta^2S_2(n)=\Delta(\Delta S_2(n))=(n+2)^2-(n+1)^2=2n+3 Δ2S2(n)=Δ(ΔS2(n))=(n+2)2−(n+1)2=2n+3

三阶差分:
Δ 3 S 2 ( n ) = Δ ( Δ 2 S 2 ( n ) ) = [ 2 ( n + 1 ) + 3 ] − [ 2 n + 3 ] = 2 \Delta^3S_2(n)=\Delta(\Delta^2S_2(n))=[2(n+1)+3]-[2n+3]=2 Δ3S2(n)=Δ(Δ2S2(n))=[2(n+1)+3]−[2n+3]=2

四阶差分:
Δ 4 S 2 ( n ) = Δ ( Δ 3 S 2 ( n ) ) = 2 − 2 = 0 \Delta^4S_2(n)=\Delta(\Delta^3S_2(n))=2-2=0 Δ4S2(n)=Δ(Δ3S2(n))=2−2=0

四阶差分为零,而三阶差分是一个常数。这表明 S 2 ( n ) S_2(n) S2(n)是一个三次多项式。

相关推荐
寂—作业逆行者3 小时前
反比例函数的深层理解、题目技巧与应用
数学·函数·反比例函数
寂—作业逆行者4 小时前
初识反比例函数
数学·函数·反比例函数
青花瓷7 天前
空间内任意点到直线和平面的距离推导
数学·平面·解析几何
Lyrella8 天前
拉格朗日反演小记
数学
AI是这个时代的魔法9 天前
The Action Replay Process
数学·算法·随机决策过程
啊阿狸不会拉杆10 天前
人工智能数学基础(十)—— 图论
人工智能·python·数学·算法·图论
啊阿狸不会拉杆16 天前
人工智能数学基础(五):概率论
人工智能·python·数学·算法·概率论
啊阿狸不会拉杆17 天前
人工智能数学基础(四):线性代数
人工智能·python·数学·算法·机器学习
量子位19 天前
数学家们仍在追赶天才拉马努金
人工智能·数学
是数学系的小孩儿19 天前
数值分析、数值代数之追赶法
数学·matlab·电脑