线性代数中的正交和标准正交向量

在线性代数中,理解正交向量和正交向量至关重要,尤其是对于机器学习中的应用。这篇博文将简化这些概念,而不会太深入地深入研究复杂的数学。

正交向量

如果两个向量的点积等于零,则认为这两个向量是正交的。但点积到底是什么呢?两个 n 维向量 A 和 B 的点积(或标量积)可以表示如下:

复制代码
A · B = ∑ (from i=1 to n) a_i * b_i

因此,如果满足以下条件,向量 A 和 B 是正交的:

复制代码
A · B = 0

考虑 3D 空间中的两个向量:

( v_1 = [1, -2, 4] )

( v_2 = [2, 5, 2] )

为了检查它们是否正交,我们计算它们的点积:

复制代码
v_1 · v_2 = [1, -2, 4] · [2, 5, 2] = 1*2 + (-2)*5 + 4*2 = 0

由于结果为零,因此向量是正交的。

Python 代码示例

下面是一个简单的 Python 程序,它说明了正交向量:

复制代码
# A python program to illustrate orthogonal vector

# Import numpy module
import numpy

# Taking two vectors
v1 = [[1, -2, 4]]
v2 = [[2, 5, 2]]

# Transpose of v1
transposeOfV1 = numpy.transpose(v1)

# Matrix multiplication of both vectors
result = numpy.dot(v2, transposeOfV1)
print("Result =", result)

# Output
# Result = 0

单位向量

接下来,我们来讨论一下单位向量。单位向量是通过向量除以其大小从向量中得出的。对于向量 ( A ),单位向量 ( \hat{a} ) 定义为:

复制代码
\hat{a} = A / |A|

考虑 2D 空间中的向量 ( A ):

复制代码
( A = [3, 4] )
( A ) 的大小计算如下:

因此,单位向量 ( \hat{a} ) 为:

bash 复制代码
\hat{a} = A / |A| = [3/5, 4/5]

单位向量的属性

单位向量定义坐标系中的方向。

任何向量都可以表示为单位向量和标量大小的乘积。
正交向量

正交向量不仅是正交的,而且还具有单位大小。要将正交向量转换为正交向量,只需将每个向量除以其大小即可。

对于我们之前研究的向量:

对于 ( v_1 = [1, -2, 4] ):

bash 复制代码
v_1' = v_1 / |v_1| = [1, -2, 4] / √(1² + (-2)² + 4²)

对于 ( v_2 = [2, 5, 2] ):

bash 复制代码
v_2' = v_2 / |v_2| = [2, 5, 2] / √(2² + 5² + 2²)

通过将这些向量转换为单位向量,它们保持正交并达到单位大小,从而形成正交向量。

注意

所有正交向量本质上都是正交的,由其属性定义。

相关推荐
iNBC13 分钟前
AI基础概念-第一部分:核心名词与定义(一)
人工智能·语言模型·prompt
java1234_小锋17 分钟前
PyTorch2 Python深度学习 - transform预处理转换模块
开发语言·python·深度学习·pytorch2
wechat_Neal1 小时前
AI革新汽车安全软件开发
人工智能·语言模型·自然语言处理
leafff1236 小时前
新手入坑 Stable Diffusion:模型、LoRA、硬件一篇讲透
人工智能·计算机视觉·stable diffusion
Liudef067 小时前
DeepseekV3.2 实现构建简易版Wiki系统:从零开始的HTML实现
前端·javascript·人工智能·html
珺毅同学8 小时前
YOLO输出COCO指标及YOLOv12报错
python·深度学习·yolo
格林威8 小时前
AOI在产品质量检测制造领域的应用
人工智能·数码相机·计算机网络·计算机视觉·目标跟踪·视觉检测·制造
短视频矩阵源码定制9 小时前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
彩云回9 小时前
多维尺度分析法(MDS)
人工智能·机器学习·1024程序员节
Rock_yzh9 小时前
AI学习日记——Transformer的架构:编码器与解码器
人工智能·深度学习·神经网络·学习·transformer