数据结构中的邻接矩阵

一、概念

邻接矩阵(Adjacency Matrix)是图(Graph)的一种表示方法,用于描述图中顶点之间的连接关系。它是一种常见的数据结构,特别适用于表示稠密图(即边数接近于顶点数平方的图)。

在图论中,图由顶点(Vertices)和边(Edges)组成。根据图的类型(有向图或无向图),邻接矩阵的定义略有不同:

  • 无向图:对于无向图,邻接矩阵是对称的,即 A[i][j]=A[j][i]。如果顶点 i 和顶点 j 之间有一条边,则邻接矩阵的元素 A[i][j] 和 A[j][i] 都为1,否则为0。
  • 有向图:对于有向图,邻接矩阵不一定对称。如果有一条从顶点 i 到顶点 j 的有向边,则邻接矩阵的元素 A[i][j] 为1,否则为0。

邻接矩阵是一个 n×n 的矩阵,其中 n 是图中顶点的数量。矩阵中的每个元素 A[i][j] 表示顶点 i 和顶点 j 之间的连接关系。邻接矩阵的优点是查询顶点之间是否存在边的时间复杂度为O(1),但缺点是空间复杂度较高,为O(n2),不适合表示稀疏图(即边数远小于顶点数平方的图)。

二、原理及特性

1、矩阵构建规则

  • 顶点映射:将图的每个顶点分配唯一索引(如 0,1,...,n−1)。

  • 对称性:无向图的邻接矩阵是对称矩阵(A[i][j]=A[j][i]),而有向图不一定对称。

  • 自环边:若允许顶点到自身的边,则对角线元素 A[i][i] 可能非零。

2、空间复杂度

  • 邻接矩阵的空间复杂度为,其中 n 为顶点数。

  • 适合稠密图(边数接近顶点数的平方),但对稀疏图(边数远小于顶点数平方)会造成空间浪费。

3、时间复杂度

操作 时间复杂度 说明
检查边是否存在 O(1) 直接访问矩阵元素
添加/删除边 O(1) 修改对应元素值
遍历某个顶点的所有邻居 O(n) 需要扫描整行/列
获取定点度数(无向图) O(n) 统计行或列中非零元素个数

三、python实现

1、无向图的邻接矩阵

python 复制代码
class UndirectedGraph:
    def __init__(self, num_vertices):
        self.num_vertices = num_vertices
        self.adj_matrix = [[0] * num_vertices for _ in range(num_vertices)]

    def add_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        self.adj_matrix[i][j] = 1
        self.adj_matrix[j][i] = 1

    def remove_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        self.adj_matrix[i][j] = 0
        self.adj_matrix[j][i] = 0

    def has_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        return self.adj_matrix[i][j] == 1

    def display(self):
        for row in self.adj_matrix:
            print(row)

# 示例使用
graph = UndirectedGraph(5)
graph.add_edge(0, 1)
graph.add_edge(0, 2)
graph.add_edge(1, 2)
graph.add_edge(3, 4)

print("邻接矩阵:")
graph.display()

print("顶点 0 和 1 之间是否有边:", graph.has_edge(0, 1))
print("顶点 0 和 3 之间是否有边:", graph.has_edge(0, 3))

2、有向图的邻接矩阵

python 复制代码
class DirectedGraph:
    def __init__(self, num_vertices):
        self.num_vertices = num_vertices
        self.adj_matrix = [[0] * num_vertices for _ in range(num_vertices)]

    def add_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        self.adj_matrix[i][j] = 1

    def remove_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        self.adj_matrix[i][j] = 0

    def has_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        return self.adj_matrix[i][j] == 1

    def display(self):
        for row in self.adj_matrix:
            print(row)

# 示例使用
graph = DirectedGraph(5)
graph.add_edge(0, 1)
graph.add_edge(0, 2)
graph.add_edge(1, 2)
graph.add_edge(3, 4)

print("邻接矩阵:")
graph.display()

print("顶点 0 和 1 之间是否有边:", graph.has_edge(0, 1))
print("顶点 0 和 3 之间是否有边:", graph.has_edge(0, 3))
相关推荐
打小就很皮...8 分钟前
使用 React 实现语音识别并转换功能
人工智能·语音识别
老朋友此林15 分钟前
MiniMind:3块钱成本 + 2小时!训练自己的0.02B的大模型。minimind源码解读、MOE架构
人工智能·python·nlp
LitchiCheng18 分钟前
复刻低成本机械臂 SO-ARM100 单关节控制(附代码)
人工智能·机器学习·机器人
微学AI20 分钟前
大模型的应用中A2A(Agent2Agent)架构的部署过程,A2A架构实现不同机器人之间的高效通信与协作
人工智能·架构·机器人·a2a
AI视觉网奇30 分钟前
MoE 学习笔记
人工智能
zhangpeng45554794037 分钟前
数据结构-非线性结构-二叉树
数据结构
_Itachi__1 小时前
LeetCode 热题 100 543. 二叉树的直径
java·算法·leetcode
多巴胺与内啡肽.1 小时前
Opencv进阶操作:图像拼接
人工智能·opencv·计算机视觉
宸汐Fish_Heart1 小时前
Python打卡训练营Day22
开发语言·python
是代码侠呀1 小时前
飞蛾扑火算法matlab实现
开发语言·算法·matlab·github·github star·github 加星