数据结构中的邻接矩阵

一、概念

邻接矩阵(Adjacency Matrix)是图(Graph)的一种表示方法,用于描述图中顶点之间的连接关系。它是一种常见的数据结构,特别适用于表示稠密图(即边数接近于顶点数平方的图)。

在图论中,图由顶点(Vertices)和边(Edges)组成。根据图的类型(有向图或无向图),邻接矩阵的定义略有不同:

  • 无向图:对于无向图,邻接矩阵是对称的,即 A[i][j]=A[j][i]。如果顶点 i 和顶点 j 之间有一条边,则邻接矩阵的元素 A[i][j] 和 A[j][i] 都为1,否则为0。
  • 有向图:对于有向图,邻接矩阵不一定对称。如果有一条从顶点 i 到顶点 j 的有向边,则邻接矩阵的元素 A[i][j] 为1,否则为0。

邻接矩阵是一个 n×n 的矩阵,其中 n 是图中顶点的数量。矩阵中的每个元素 A[i][j] 表示顶点 i 和顶点 j 之间的连接关系。邻接矩阵的优点是查询顶点之间是否存在边的时间复杂度为O(1),但缺点是空间复杂度较高,为O(n2),不适合表示稀疏图(即边数远小于顶点数平方的图)。

二、原理及特性

1、矩阵构建规则

  • 顶点映射:将图的每个顶点分配唯一索引(如 0,1,...,n−1)。

  • 对称性:无向图的邻接矩阵是对称矩阵(A[i][j]=A[j][i]),而有向图不一定对称。

  • 自环边:若允许顶点到自身的边,则对角线元素 A[i][i] 可能非零。

2、空间复杂度

  • 邻接矩阵的空间复杂度为,其中 n 为顶点数。

  • 适合稠密图(边数接近顶点数的平方),但对稀疏图(边数远小于顶点数平方)会造成空间浪费。

3、时间复杂度

操作 时间复杂度 说明
检查边是否存在 O(1) 直接访问矩阵元素
添加/删除边 O(1) 修改对应元素值
遍历某个顶点的所有邻居 O(n) 需要扫描整行/列
获取定点度数(无向图) O(n) 统计行或列中非零元素个数

三、python实现

1、无向图的邻接矩阵

python 复制代码
class UndirectedGraph:
    def __init__(self, num_vertices):
        self.num_vertices = num_vertices
        self.adj_matrix = [[0] * num_vertices for _ in range(num_vertices)]

    def add_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        self.adj_matrix[i][j] = 1
        self.adj_matrix[j][i] = 1

    def remove_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        self.adj_matrix[i][j] = 0
        self.adj_matrix[j][i] = 0

    def has_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        return self.adj_matrix[i][j] == 1

    def display(self):
        for row in self.adj_matrix:
            print(row)

# 示例使用
graph = UndirectedGraph(5)
graph.add_edge(0, 1)
graph.add_edge(0, 2)
graph.add_edge(1, 2)
graph.add_edge(3, 4)

print("邻接矩阵:")
graph.display()

print("顶点 0 和 1 之间是否有边:", graph.has_edge(0, 1))
print("顶点 0 和 3 之间是否有边:", graph.has_edge(0, 3))

2、有向图的邻接矩阵

python 复制代码
class DirectedGraph:
    def __init__(self, num_vertices):
        self.num_vertices = num_vertices
        self.adj_matrix = [[0] * num_vertices for _ in range(num_vertices)]

    def add_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        self.adj_matrix[i][j] = 1

    def remove_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        self.adj_matrix[i][j] = 0

    def has_edge(self, i, j):
        if i >= self.num_vertices or j >= self.num_vertices:
            raise ValueError("Vertex index out of bounds")
        return self.adj_matrix[i][j] == 1

    def display(self):
        for row in self.adj_matrix:
            print(row)

# 示例使用
graph = DirectedGraph(5)
graph.add_edge(0, 1)
graph.add_edge(0, 2)
graph.add_edge(1, 2)
graph.add_edge(3, 4)

print("邻接矩阵:")
graph.display()

print("顶点 0 和 1 之间是否有边:", graph.has_edge(0, 1))
print("顶点 0 和 3 之间是否有边:", graph.has_edge(0, 3))
相关推荐
m0_7513363918 分钟前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
拓端研究室1 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
wwer1425263631 小时前
数学建模_图论
数学建模·图论
随缘而动,随遇而安3 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
美狐美颜sdk3 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li4 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝4 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董4 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp