PySpark检查两个DataFrame的数据是否一致

数据条数比较

可以使用 count() 方法来获取每个DataFrame的行数,若行数不同,则数据肯定不一致。示例代码如下:

python 复制代码
df1 = spark.createDataFrame([(1, 'a'), (2, 'b')], ['id', 'name'])
df2 = spark.createDataFrame([(1, 'a'), (2, 'b'), (3, 'c')], ['id', 'name'])

if df1.count()!= df2.count():
    print("两个DataFrame数据条数不一致")

数据排序后比较

先对两个DataFrame按照相同的列进行排序,再将它们转换为RDD,然后使用 zip 函数将两个RDD的元素一一对应地组合成元组,最后检查每个元组中的两个元素是否相等。示例代码如下:

python 复制代码
sorted_df1 = df1.sort('id')
sorted_df2 = df2.sort('id')

rdd1 = sorted_df1.rdd
rdd2 = sorted_df2.rdd

if all(x == y for x, y in rdd1.zip(rdd2)):
    print("两个DataFrame数据一致")
else:
    print("两个DataFrame数据不一致")

数据差值比较

使用 subtract 方法获取两个DataFrame的差值,如果差值DataFrame为空,则说明两个DataFrame数据一致。示例代码如下:

python 复制代码
diff_df1 = df1.subtract(df2)
diff_df2 = df2.subtract(df1)

if diff_df1.count() == 0 and diff_df2.count() == 0:
    print("两个DataFrame数据一致")
else:
    print("两个DataFrame数据不一致")

数据哈希值比较

计算每个DataFrame中每行数据的哈希值,然后比较两个DataFrame的哈希值集合是否相等。示例代码如下:

python 复制代码
from pyspark.sql.functions import hash

hashed_df1 = df1.select(hash(*df1.columns).alias('hash_value'))
hashed_df2 = df2.select(hash(*df2.columns).alias('hash_value'))

hash_set1 = set(hashed_df1.rdd.flatMap(lambda x: x).collect())
hash_set2 = set(hashed_df2.rdd.flatMap(lambda x: x).collect())

if hash_set1 == hash_set2:
    print("两个DataFrame数据一致")
else:
    print("两个DataFrame数据不一致")
相关推荐
智海观潮1 小时前
Flink CDC支持Oracle RAC架构CDB+PDB模式的实时数据同步吗,可以上生产环境吗
大数据·oracle·flink·flink cdc·数据同步
企企通采购云平台1 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
Apache Flink1 小时前
Flink Forward Asia 2025 主旨演讲精彩回顾
大数据·flink
泰迪智能科技013 小时前
分享|大数据采集工程师职业技术报考指南
大数据
zskj_zhyl4 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
AllData公司负责人4 小时前
实时开发IDE部署指南
大数据·ide·开源
电商数据girl4 小时前
有哪些常用的自动化工具可以帮助处理电商API接口返回的异常数据?【知识分享】
大数据·分布式·爬虫·python·系统架构
ZeroNews内网穿透5 小时前
服装零售企业跨区域运营难题破解方案
java·大数据·运维·服务器·数据库·tcp/ip·零售
百胜软件@百胜软件5 小时前
重庆兰瓶×百胜软件正式签约,全渠道中台赋能美业新零售
大数据·零售
江瀚视野5 小时前
美团即时零售日订单突破1.2亿,即时零售生态已成了?
大数据·人工智能·零售