LLM论文笔记 12: Teaching Arithmetic to Small Transformers

  • Arxiv日期:2023.7.7
  • 机构:University of Wisconsin-Madison / Princeton University

关键词

  • 算数运算推理
  • 长度泛化
  • 实验结论

核心结论

  1. 算数运算NTP中数据格式使用reverse 或者scratchpad格式(CoT)可以显著提高精确度,cot可以显著减小需要的训练数据量
  1. 数据平衡和采样策略:平衡不同位数和进位的sample显著提高性能

  2. 泛化能力:对训练中未见的数值表现出一定的泛化能力,但对未训练的更长位数加法的泛化能力有限(基本没有长度泛化)-> 学习的是一种有限的函数映射,而非灵活的算法

  3. 混合数据训练(文本+算术)+ few shot 显著提高精度

  4. 精心设计的数据格式可以在小模型上提到极高的性能

主要方法

观察到算数运算(加减乘除开根)上简单微调NTP是次优的(如加法123+456=579第一个预测的结果位是5,但是5由7和9决定),提出算数运算上的结构化数据(reverse / scratchpad即cot),以加法为例建模为低秩矩阵补全并提出一定数据量产生性能跃迁。

还发现了平衡不同位数和进位的sample显著提高性能。局限性在于长度泛化几乎不出现。

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
Y1nhl1 小时前
搜广推校招面经六十四
人工智能·深度学习·leetcode·广告算法·推荐算法·搜索算法
禁默1 小时前
智能体开发基础:从概念到实现
人工智能·大模型·智能体
Y1nhl2 小时前
Pyspark学习一:概述
数据库·人工智能·深度学习·学习·spark·pyspark·大数据技术
简简单单做算法4 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
就决定是你啦!5 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
有个人神神叨叨7 小时前
OpenAI发布的《Addendum to GPT-4o System Card: Native image generation》文件的详尽笔记
人工智能·笔记
林九生7 小时前
【Python】Browser-Use:让 AI 替你掌控浏览器,开启智能自动化新时代!
人工智能·python·自动化
liuyunshengsir8 小时前
AI Agent 实战:搭建个人在线旅游助手
人工智能·旅游
Shawn_Shawn8 小时前
大模型微调介绍
人工智能
TiAmo zhang8 小时前
DeepSeek-R1 模型现已在亚马逊云科技上提供
人工智能·云计算·aws