LLM论文笔记 12: Teaching Arithmetic to Small Transformers

  • Arxiv日期:2023.7.7
  • 机构:University of Wisconsin-Madison / Princeton University

关键词

  • 算数运算推理
  • 长度泛化
  • 实验结论

核心结论

  1. 算数运算NTP中数据格式使用reverse 或者scratchpad格式(CoT)可以显著提高精确度,cot可以显著减小需要的训练数据量
  1. 数据平衡和采样策略:平衡不同位数和进位的sample显著提高性能

  2. 泛化能力:对训练中未见的数值表现出一定的泛化能力,但对未训练的更长位数加法的泛化能力有限(基本没有长度泛化)-> 学习的是一种有限的函数映射,而非灵活的算法

  3. 混合数据训练(文本+算术)+ few shot 显著提高精度

  4. 精心设计的数据格式可以在小模型上提到极高的性能

主要方法

观察到算数运算(加减乘除开根)上简单微调NTP是次优的(如加法123+456=579第一个预测的结果位是5,但是5由7和9决定),提出算数运算上的结构化数据(reverse / scratchpad即cot),以加法为例建模为低秩矩阵补全并提出一定数据量产生性能跃迁。

还发现了平衡不同位数和进位的sample显著提高性能。局限性在于长度泛化几乎不出现。

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
HDO清风20 小时前
CASIA-HWDB2.x 数据集DGRL文件解析(python)
开发语言·人工智能·pytorch·python·目标检测·计算机视觉·restful
策知道20 小时前
依托政府工作报告准备省考【经验贴】
大数据·数据库·人工智能·搜索引擎·政务
小Tomkk20 小时前
PyTorch +YOLO + Label Studio + 图像识别 深度学习项目实战 (二)
pytorch·深度学习·yolo
工程师老罗20 小时前
Pytorch如何加载和读取VOC数据集用来做目标检测?
人工智能·pytorch·目标检测
测试_AI_一辰20 小时前
Agent & RAG 测试工程05:把 RAG 的检索过程跑清楚:chunk 是什么、怎么来的、怎么被命中的
开发语言·人工智能·功能测试·自动化·ai编程
Henry-SAP20 小时前
SAP(ERP) 组织结构业务视角解析
大数据·人工智能·sap·erp·sap pp
龙腾亚太20 小时前
航空零部件加工变形难题破解:数字孪生 + 深度学习的精度控制实战
人工智能·深度学习·数字孪生·ai工程师·ai证书·转型ai
Coding茶水间20 小时前
基于深度学习的输电电力设备检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
是Dream呀20 小时前
基于深度学习的人类活动识别模型研究:HAR-DeepConvLG的设计与应用
人工智能·深度学习
jkyy201421 小时前
健康座舱:健康有益赋能新能源汽车开启移动健康新场景
人工智能·物联网·汽车·健康医疗