LLM论文笔记 12: Teaching Arithmetic to Small Transformers

  • Arxiv日期:2023.7.7
  • 机构:University of Wisconsin-Madison / Princeton University

关键词

  • 算数运算推理
  • 长度泛化
  • 实验结论

核心结论

  1. 算数运算NTP中数据格式使用reverse 或者scratchpad格式(CoT)可以显著提高精确度,cot可以显著减小需要的训练数据量
  1. 数据平衡和采样策略:平衡不同位数和进位的sample显著提高性能

  2. 泛化能力:对训练中未见的数值表现出一定的泛化能力,但对未训练的更长位数加法的泛化能力有限(基本没有长度泛化)-> 学习的是一种有限的函数映射,而非灵活的算法

  3. 混合数据训练(文本+算术)+ few shot 显著提高精度

  4. 精心设计的数据格式可以在小模型上提到极高的性能

主要方法

观察到算数运算(加减乘除开根)上简单微调NTP是次优的(如加法123+456=579第一个预测的结果位是5,但是5由7和9决定),提出算数运算上的结构化数据(reverse / scratchpad即cot),以加法为例建模为低秩矩阵补全并提出一定数据量产生性能跃迁。

还发现了平衡不同位数和进位的sample显著提高性能。局限性在于长度泛化几乎不出现。

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
青花瓷20 分钟前
llama-Factory不宜直接挂接Ollama的大模型
人工智能·大模型·agent·llama·智能体
whaosoft-14336 分钟前
51c自动驾驶~合集40
人工智能
davysiao39 分钟前
数据智能重塑工业控制:神经网络在 MPC 中的四大落地范式与避坑指南
人工智能·深度学习·神经网络·工业控制
慕婉03071 小时前
如何理解编程中的递归、迭代与回归?
人工智能·数据挖掘·回归
高工智能汽车1 小时前
AI汽车时代的全面赋能者:德赛西威全栈能力再升级
人工智能·microsoft·汽车
伊织code1 小时前
PyTorch API 1 - 概述、数学运算、nn、实用工具、函数、张量
人工智能·pytorch·python·深度学习·ai·api
Echo``1 小时前
4:点云处理—去噪、剪切、调平
c++·图像处理·人工智能·算法·机器学习·计算机视觉
啥都生1 小时前
AI面经总结-试读
人工智能
Ayanamii丶1 小时前
DAY 22 复习日kaggle泰坦里克号人员生还预测
人工智能·python·机器学习
weixin_446260851 小时前
视觉革命来袭!ComfyUI-LTXVideo 让视频创作更高效
人工智能·音视频