LLM论文笔记 12: Teaching Arithmetic to Small Transformers

  • Arxiv日期:2023.7.7
  • 机构:University of Wisconsin-Madison / Princeton University

关键词

  • 算数运算推理
  • 长度泛化
  • 实验结论

核心结论

  1. 算数运算NTP中数据格式使用reverse 或者scratchpad格式(CoT)可以显著提高精确度,cot可以显著减小需要的训练数据量
  1. 数据平衡和采样策略:平衡不同位数和进位的sample显著提高性能

  2. 泛化能力:对训练中未见的数值表现出一定的泛化能力,但对未训练的更长位数加法的泛化能力有限(基本没有长度泛化)-> 学习的是一种有限的函数映射,而非灵活的算法

  3. 混合数据训练(文本+算术)+ few shot 显著提高精度

  4. 精心设计的数据格式可以在小模型上提到极高的性能

主要方法

观察到算数运算(加减乘除开根)上简单微调NTP是次优的(如加法123+456=579第一个预测的结果位是5,但是5由7和9决定),提出算数运算上的结构化数据(reverse / scratchpad即cot),以加法为例建模为低秩矩阵补全并提出一定数据量产生性能跃迁。

还发现了平衡不同位数和进位的sample显著提高性能。局限性在于长度泛化几乎不出现。

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
数据科学作家3 分钟前
如何入门python机器学习?金融从业人员如何快速学习Python、机器学习?机器学习、数据科学如何进阶成为大神?
大数据·开发语言·人工智能·python·机器学习·数据分析·统计分析
GJGCY4 分钟前
金融智能体技术解读:十大应用场景与AI Agent架构设计思路
人工智能·经验分享·ai·金融·自动化
文火冰糖的硅基工坊9 分钟前
[人工智能-大模型-57]:模型层技术 - 软件开发的不同层面(如底层系统、中间件、应用层等),算法的类型、设计目标和实现方式存在显著差异。
人工智能·算法·中间件
Coovally AI模型快速验证14 分钟前
突破性开源模型DepthLM问世:视觉语言模型首次实现精准三维空间理解
人工智能·语言模型·自然语言处理·ocr·音视频·ai编程
芯片SIPI设计26 分钟前
面向3D IC AI芯片中UCIe 电源传输与电源完整性的系统分析挑战与解决方案
人工智能·3d
浆果020732 分钟前
【图像超分】论文复现:轻量化超分 | RLFN的Pytorch源码复现,跑通源码,整合到EDSR-PyTorch中进行训练、测试
人工智能·python·深度学习·超分辨率重建·1024程序员节
yiyeyeshenlan39 分钟前
WSL2调用摄像头并使用OpenCV
深度学习·ubuntu
CV实验室1 小时前
TPAMI 2025 | 从分离到融合:新一代3D场景技术实现双重能力提升!
人工智能·计算机视觉·3d
IT_陈寒1 小时前
SpringBoot 3.2 实战:这5个新特性让你的开发效率提升50%!
前端·人工智能·后端
加油吧zkf1 小时前
深度可分离卷积
人工智能·python·深度学习·神经网络·计算机视觉