LLM论文笔记 15: Transformers Can Achieve Length Generalization But Not Robustly

  • Arxiv日期:2024.2.14
  • 机构:Google DeepMind / University of Toronto

关键词

  • 长度泛化
  • 位置编码
  • 数据格式

核心结论

  1. 实验结论:十进制加法任务上的长度泛化最佳组合:
  • FIRE位置编码

  • 随机化位置编码

  • 反向数据格式

  • 索引提示(index hints,辅助定位)

  1. 在适当的配置下,Transformer模型可以泛化到训练序列长度的2.5倍(例如从40位加法训练成功泛化到100位加法)

  2. 长度泛化的表现高度依赖于随机权重初始化和训练数据的顺序,导致不同试验之间的性能差异显著

  3. 增大模型规模对长度泛化的提升有限,且有时可能导致性能下降

主要方法

主要探讨Transformer模型在长度泛化(length generalization)上的表现,特别是在整数加法任务中的应用。

长度泛化指的是模型从训练中的短序列泛化到测试中的更长序列的能力。

研究通过调整位置编码(position encoding)和数据格式 ,证明了Transformer在长度泛化上的潜力,但同时指出了其鲁棒性较差的问题。

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
rannn_11117 小时前
【Javaweb学习|实训总结|Week1】html基础,CSS(选择器、常用样式、盒子模型、弹性盒布局、CSS定位、动画),js(基本类型、运算符典例)
css·笔记·学习·html
Ro Jace17 小时前
心灵笔记:第一性原理学习与实践
笔记
THMAIL17 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
xcnn_17 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习
attitude.x17 小时前
PyTorch 动态图的灵活性与实用技巧
前端·人工智能·深度学习
Ven%18 小时前
第一章 神经网络的复习
人工智能·深度学习·神经网络
aramae18 小时前
C++ -- 模板
开发语言·c++·笔记·其他
研梦非凡18 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
小马学嵌入式~18 小时前
嵌入式 SQLite 数据库开发笔记
linux·c语言·数据库·笔记·sql·学习·sqlite
hour_go19 小时前
用户态与内核态的深度解析:安全、效率与优化之道
笔记·操作系统