政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成

政安晨的个人主页:************政安晨****************

欢迎 👍点赞✍评论⭐收藏

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

目录

下载项目

创建虚拟环境

安装项目依赖

[安装 Gradio(UI)](#安装 Gradio(UI))

[运行 Janus Pro UI](#运行 Janus Pro UI)


以后铁子们玩开源大模型就朝着多模态的方面进发吧,未来开源的多模态大模型不在多模态领域整出点花花儿,都不好意思说自己是搞开源的。🤭🤭🤭

今天我们一起部署一下这个Janus-Pro-7B的模型,正好手头缺一款轻量级自由出图助手!嘻嘻。

下载项目

复制代码
git clone https://github.com/deepseek-ai/Janus.git

网速慢的小伙伴可以考虑镜像站点。

创建虚拟环境

复制代码
conda create -n janus python=3.10.6 -y

进行项目目录:

安装项目依赖

复制代码
pip install -e .

耐心等待。

为确保与 GPU 兼容,请安装支持 CUDA 的最新版本的 PyTorch、TorchVision 和 TorchAudio。即使已经安装了 PyTorch,您在运行 Web 应用程序时也可能会遇到问题,因此最好更新:

复制代码
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

或者这样:

复制代码
pip uninstall torch torchvision torchaudio -y
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

(当然,如果更新过了也可以不执行上面指令)

这样依赖库就安装成功了。

安装 Gradio(UI)

复制代码
pip install gradio

完成安装。

运行 Janus Pro UI

复制代码
python demo/app_januspro.py

首次运行时会下载模型:

差不多20G大小,建议准备足够的空间。

或者这样(指定GPU):

复制代码
python demo/app_januspro.py --device cuda

好了,可以好好用了。

多模态大模型的价值在哪里?

以多模态的开源权重,驱动具体事务问题的解决。


相关推荐
鼓掌MVP1 分钟前
边缘计算应用实践心得
人工智能·边缘计算
QYR_113 分钟前
宠物车载安全座椅市场报告:解读行业趋势与投资前景
大数据·人工智能
wswlqsss7 分钟前
第四十五天打卡
人工智能·深度学习
Likeadust11 分钟前
视频汇聚平台EasyCVR“明厨亮灶”方案筑牢旅游景区餐饮安全品质防线
网络·人工智能·音视频
天翼云开发者社区24 分钟前
总决赛定档!“天翼云息壤杯”高校AI大赛巅峰之战即将打响!
人工智能·ai大赛
亚马逊云开发者34 分钟前
Amazon Bedrock 助力 SolveX.AI 构建智能解题 Agent,打造头部教育科技应用
人工智能
新德通科技1 小时前
新德通科技:以创新驱动光通信一体化发展,赋能全球智能互联
人工智能
__星辰大海__1 小时前
NeRF PyTorch 源码解读 - NDC空间
人工智能
Java学术趴1 小时前
RNN指南:从梯度消失到LSTM魔改,一文说透RNN/LSTM/GRU的隐藏优势!
人工智能
coderCatIce1 小时前
刘二大人第2讲-线性模型-带代码以及作业答案
人工智能·机器学习